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ABSTRACT

One of the broad goals of research in computational audi-
tory scene analysis (CASA) is to create computer systems
that can learn to recognize sound sources in a complex
auditory environment. In this paper, a set of acoustic fea-
tures is proposed that relate to the physical properties of
sound-producing objects. In particular, a set of orchestral
musical instrument sounds is presented as representative of
the class of sounds produced by quasi-periodic excitation of
resonant structures, acoustic properties of this class are con-
sidered, and the log-lag correlogram is presented as a signal
representation that codes many of the proposed features.
Specific examples are given of features extracted from vio-
lin, trumpet, and flute tones. Extensions to Ellis’s predic-
tion-driven CASA framework are proposed in the form of a
hierarchy of sound-source models represented by frames. It
is suggested that the goal of building an artificial system for
sound source recognition in complex mixtures may be well
served by such an approach.

1. INTRODUCTION

Recognizing objects in the environment from the sounds
they produce is arguably the primary function of the audi-
tory system. An organism that can sense a threat at a dis-
tance has a competitive advantage (in the evolutionary
sense) over one that cannot. Recognition is possible, in part,
because acoustic features of sounds often betray physical
properties of their sources. As a simple example, large ob-
jects tend to produce sound energy at frequencies lower
than those produced by small objects. If an organism’s goal
is to recognize sounds as arising from particular source
classes, recognition should be basedif possibleon those
acoustic features that are invariant across the sounds within
each class yet distinguish between the sounds of different
classes. For many classes of sound sources, acoustic char-
acteristics that correlate with physical or behavioral proper-
ties are examples of such highly discriminatory features.

One of the broad goals of computational auditory scene
analysis research is to create computer systems that can
learn to recognize the sound sources in a complex auditory

environment. In this paper, the class of sounds generated by
quasi-periodic excitation of resonance structures will be
considered. This class includes many animal vocalizations,
but the discussion will be limited to sounds produced by a
set of orchestral musical instruments, including members of
the string, brass, and woodwind families. Although recog-
nizing musical instruments is clearly not a task of evolu-
tionary significance, humans can become skilled at identi-
fying the types of musical instruments (e.g., clarinet, violin,
etc.) independent of a particular performer and, to a large
degree, of the acoustic environment. To date, no artificial
system has been built that can demonstrate the same com-
petence, but enough is known about the acoustic features
that allow listeners to distinguish among the instrument
classes that we might hope to be able to build a system that
can do so.

The remainder of this paper comprises three sections. Sec-
tion 2 describes relevant research in computational auditory
scene analysis. In Section 3, a set of acoustic features is
proposedrelated to physical properties of sound-
producing objectsthat can be extracted from a simple
auditory model. In Section 4, a method is described for
constructing an artificial systemusing the principles of
auditory scene analysisthat employs these features to
recognize musical instruments. In particular, extensions to
Ellis’s prediction-driven computational auditory scene
analysis framework [1] are proposed that will enable hier-
archical sound source classification and automatic acquisi-
tion of new models as novel sound sources are encountered.

The difficult problems associated with learning new fea-
tures for discrimination will not be considered. Instead, a
set of previously learned or hard-wired featuresone suffi-
cient to distinguish among the sound classes of inter-
estwill be presupposed. This is not to say that every fea-
ture is relevant for every sound; each particular feature may
be relevant to the recognition of only a subset of the sound
source classes of interest.

The system described here is still in the early stages of im-
plementation. One of the goals of this paper is to solicit
feedback from members of the computational hearing
community about the proposed approach.



2

2. BACKGROUND: CASA

Auditory scene analysis is the process of explaining sound
energy arriving at the ears in terms of coherent acoustic
sources. Bregman describes it as a complex interaction of
grouping heuristics and learned schemata [2]. His grouping
heuristics organize sound energy by harmonicity, common
onset, common modulation, and common spatial location.
Sequential integration is mediated by principles such as
similarity of pitch, loudness, and timbre. These heuristics
may operate in either a bottom-up (data-driven) or top-
down (schema- or prediction-driven) fashion, depending
both on the particular heuristic and the context. Several
attempts have been made to build computational auditory
scene analysis (CASA) systems based on these principles.
Early efforts were limited by inadequate cues (including
limited implementations), inextensible algorithms, rigid
evidence integration, and inability to handle obscured data
(as discussed in [1]).

Two recent CASA approaches are sufficiently novel to
merit special mention here. Ellis attempted to address the
limitations of previous systems by building a system that
maintains a world-model consisting of low-level sound
objects (noise clouds, transients, and quasi-periodic tonal
elements). His system uses short-term prediction to infer
masked or obscured information and is remarkably success-
ful at grouping low-level time-frequency energy into per-
ceptually salient objectsfor example, car horns and
slamming doors in a complex, noisy street scene.

Although it was not explicitly modeled after human audi-
tory scene analysis, the IPUS Sound Understanding Test-
bed (SUT) [3] is unique among existing CASA systems in
its use of explicit sound source models. SUT contains 40
sound source models divided into five categories (chirp,
harmonic, impulsive, repetitive, and “transients”). Like
Ellis’s prediction-driven system (which also used the IPUS
blackboard framework as its architectural structure), SUT
integrates top-down (in the form of model-based inference)
and bottom-up (data-driven) processing. Although it is
likely that model-based inference plays an important part in
auditory scene analysis, the SUT implementation has a
number of severe limitations. For example, its models are
based on single instances of particular soundsused both
for training and testing of the systemrather than generali-
zations from a set of training examples. Also, SUT does not
include any mechanisms for dealing with a larger set of
models, so combinatorial explosion in search will limit the
degree to which the system can be expanded.

CASA systems are slowly expanding in complexity, but
nothing approaching robust real-world performance has
been demonstrated in any listening tasks to date. One might
speculate that a more sophisticated world-model is needed;
to that end, a combination of short-term prediction with a
hierarchy of source models is proposed, within a framework

that supports an interplay of top-down and bottom-up proc-
essing. Better source modelsand flexible methods of rea-
soning about themmay be the key to building computer
systems that can perform sound source identification in
natural environments. This type of approach is a candidate
for difficult tasks such as identifying musical instruments
within a large ensemble performance, where nearly all
sound sources are partially masked by others.

3. FEATURES FOR RECOGNITION

As stated in the introduction, acoustic characteristics that
correlate with physical or behavioral properties of sound
sources are examples of highly discriminatory features for
source recognition. The literature on musical instrument
acoustics (e.g., [4]) suggests a set of features that serve as a
useful starting point. Features that appear to be important
for musical instrument recognition include (but are not lim-
ited to): resonance characteristics (e.g., the frequencies and
bandwidths of formants), amplitude envelope (attack, de-
cay, and tremolo characteristics), inharmonicity, spectral
centroid (which is known to correlate with perceived
“brightness” [8]), onset asynchrony (the relative attack
times of low- and high-frequency partials), pitch, and fre-
quency modulation (e.g., vibrato, jitter). In sounds pro-
duced by natural sources, these features will strongly co-
vary; for example, a source with a narrow resonance (indi-
cating loose coupling between excitation and resonant
body) will exhibit a slower attack than one with a broad
resonance.

In an artificial recognition system, it is desirable that the
signal representation capture as many of these features as
clearly as possible and that it contain a degree of informa-
tion similar to that contained in the auditory system. For the
features identified above, the log-lag correlogram appears
to be a good choice of signal representation.

The correlogram representation adopted here is based on
the one underlying Ellis’s prediction-driven CASA system
[1]. Processing occurs in three stages. In the first, the raw
acoustic signal is passed through a gammatone filterbank
[5], which models the frequency resolution of the cochlea
and retains a great deal of information in the output time
signals of each channel. The filter outputs are half-wave
rectified and lightly smoothed as a rough model of inner
hair cell transduction. In high-frequency channels, these
operations remove fine timing structure while preserving
the envelopes of the signals. This process does not model
adaptation or dynamic range compression, but does retain
the desirable feature of coding signal intensity transpar-
ently.

In the third stage, the output of each channel is subjected to
short-time autocorrelation, implemented by a simple de-
lay/multiply/smooth architecture with a smoothing constant
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of approximately 20 ms. Autocorrelation output is com-
puted as a function of time for lags spaced evenly on a
logarithmic scale. In addition, the zero-lag autocorrelation
gives a measure of the short-time energy in each channel.

These computations are expensive but easily adapted to
parallel processing architectures. By computing each lag
separately rather than using a window-based convolution
method, it is possible to compute outputs for arbitrarily
large or small lagsindependent of the averaging-window
length.

The correlogram representation is three-dimensional. The
first dimension (cochlear position) yields critical-band fre-
quency resolution, which is capable of resolving the first
five or six harmonics of a periodic signal. The second di-
mension (autocorrelation lag) is a logarithmic representa-
tion of periodicity, corresponding to the nearly logarithmic
pitch resolution exhibited by humans. The third dimension
is time. The main panels of Figures 1−3 display snapshots
of the correlogram output for violin, trumpet, and flute
tones respectively.

Many of the features claimed here to be useful for recog-
nizing quasi-periodic sounds are captured vividly in the
correlogram representation:

Pitch − Pitched sounds will exhibit vertical organization
within the correlogram: energy at a fixed lag (corre-
sponding to the pitch period) will be present over a
range of cochlear positions (frequencies). By integrat-
ing over the cochlear dimensionforming the so-
called summary autocorrelationlikely pitch candi-
dates can be identified by finding local peaks. Exam-
ples of the summary autocorrelation are shown in the
bottom panels of Figures 1−3. Comparisons between
the pitch of a musical tone and the normal playing
ranges of known musical instruments may be useful for
identifying potential instrument modelsand ruling
out othersduring the recognition process.

Frequency modulation − It has been suggested that the
presence and character of frequency modulations, in-
cluding jitter (random modulations) and vibrato (peri-
odic modulations), are characteristic of some sound
sources [6]. For example, Figure 4 displays pitch tracks
of tones produced by the violin, trumpet, and flute. The
violin and flute tones exhibit pronounced vibrato. Brass
instruments often exhibit a characteristic pitch modu-
lation at the onset of a tone, due to loose coupling be-
tween the vibration of the player’s lips and the instru-
ment [7] (this can be seen in Figure 4 up to approxi-
mately 500 ms). It may be useful to identify a set of
sub-features related to frequency modulation, including
the presence/absence/degree of periodic modulation,
“scoop” at onset, and random variations.
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Figure 1. Correlogram snapshot of a violin tone.
The horizontal axis, labeled “pitch,” is the inverse
of autocorrelation lag. The vertical axis, labeled
“frequency,” corresponds to cochlear position. The
lower panel displays the summary autocorrelation
(the correlogram integrated over the cochlear di-
mension). The right-hand panel displays the zero-
lag energy, which for isolated periodic sources is
equal to the spectral envelope.
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Figure 2. Correlogram snapshot of a trumpet
tone. See the caption to Figure 1 for a description
of the panels.
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Figure 3. Correlogram snapshot of a flute tone.
See the caption to Figure 1 for a description of the
panels.

Spectral envelope − Following Ellis’s weft representation
[1], after the pitch-period of a sound is estimated, the
correlogram can be examined to measure periodic en-
ergy at the corresponding lag as a function of cochlear
position. This corresponds to a spectral envelope cal-
culated with critical-band resolution, which may be
used in conjunction with the pitch-track to recover the
resonance structure of the sound source (e.g., see [6]).
Approximations to the spectral envelopes of sample
violin, trumpet, and flute tones are shown in the right-
hand panels of Figures 1−3 respectively (for an isolated
quasi-periodic signal, the zero-lag energy in each fre-
quency band is approximately equal to the energy re-
covered by the technique described above).

Spectral centroid − After the spectral envelope has been
estimated, it is a simple matter to calculate its centroid.
Research has demonstrated that the spectral centroid
correlates strongly with the subjective qualities of
“brightness” or “sharpness” (e.g., [8]). The variation of
spectral centroid over time for the violin, trumpet, and
flute tones are shown in Figure 5.

Intensity − The autocorrelation output at zero lag corre-
sponds to a running estimate of the intensity in each
cochlear channel. The sum of these intensities is a sim-
ple correlate of perceived loudness. Beauchamp [9] has
suggested that the ratio of spectral centroid to intensity
is an important characteristic of musical instrument
sounds; as tones grow louder, they become “brighter”
(i.e., the spectral centroid shifts to a higher frequency)
in a relationship that might aid instrument recognition.
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Figure 4. Frequency modulation in tones pro-
duced by [bottom to top] violin, trumpet, and flute.
(The three tones were performed at the same pitch;
for display purposes, the violin’s pitch-track has
been offset by –5 Hzthe flute’s by +5 Hz.) The
violin and flute tones exhibit periodic frequency
modulations consistent with musical vibrato. The
trumpet tone exhibits random frequency modula-
tions consistent with jitter.
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Figure 5. Spectral centroid for tones produced by
[bottom to top] flute, violin, and trumpet. The
trumpet tone is “brighter” than the violin and flute
tones. Also note the large degree of variation of
the violin tone’s spectral centroid during vibrato as
compared to the flute’s.
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Figure 6. Amplitude envelope for tones produced
by [bottom to top] violin, trumpet, and flute. (For
display purposes, the violin pitch has been offset
by –5 dBthe flute by +5 dB.) Both the violin and
flute tones have clear amplitude modulation. The
violin takes much longer (nearly 500 ms!) to reach
its steady state energy level than the other two in-
struments. The flute’s onset is nearly instantane-
ous.

Amplitude envelope − The amplitude envelope is simply
the intensity measured as a function of time. It carries
information about the source excitation and its cou-
pling to the resonant body. For example, impulsive
sounds such as plucked or struck strings decay expo-
nentially with a rate that varies inversely with the
tightness of coupling between the vibrating material
(the string) and the resonant body [7]. Some instru-
ments have faster rise times than others, indicating
tight coupling between source and resonant structure.
In particular, bowed string instruments have very slow
attacks, as can be seen in Figure 6, which shows the
amplitude envelopes for the onsets of tones performed
on violin, trumpet, and flute.

Amplitude modulation − As with frequency modulation,
small variations of the amplitude envelope of a sound
can be important characteristics of natural sound
sources. Articulated brass instrument tones, for exam-
ple, often have low-amplitude, inharmonic “blips” at
onset [4]. For some instruments, such as the flute, large
periodic amplitude modulations (tremolo) are found in
conjunction with vibrato, and may be an important
identifying characteristic. It may be useful to identify a
set of sub-features related to amplitude modulation, in-
cluding the presence/absence/degree of periodic and
random variations, as well as the rise time and rate
during onset (as mentioned in the description of the
amplitude envelope).

Onset asynchrony − By observing the spectral envelope
over time, it is possible to track the rise of periodic en-
ergy in the various cochlear channels. In some instru-
ments, high-frequency components rise more slowly
than low-frequency components [4], and the ratio of
the rise times may be a useful feature for recognition.

Inharmonicity − Because of mechanical stiffness, freely
vibrating strings produce inharmonic partials. In such
string tones, the upper partials exhibit frequencies
higher than integer multiples of the first partial [7]. In-
harmonicity may be observed in the correlogram as de-
viations from strict vertical organization in the vicinity
of the estimated pitch period.

This list of features is not exhaustive, but it is representative
of the physical characteristics that may be used to distin-
guish among quasi-periodic sound sources during auditory
scene analysis. This point has not been stressed in the pres-
entation so far, but it is important to note that in everyday
listening situations instruments are not usually recognized
by isolated tones. Indeed, a short piece of a musical phrase
leads to far better recognition than isolated tones [10]. The
timbre literature has unfortunately concentrated on the
characteristics of isolated tones, placing undue emphasis on
note onsets; in natural sounds, small variations of the
“steady state” convey more robust information for identifi-
cation. In light of this observation, it may be necessary to
extend the proposed feature set to include more character-
istics of note transitions and of the steady state.

4. PROPOSED MODEL

To build an artificial recognition system, I propose to ex-
tend Ellis’s prediction-driven CASA approach with a hier-
archical taxonomy of sound source models that supports
inheritance of feature properties. Where Ellis’s system at-
tempts to explain the acoustic energy of an auditory scene
in terms of noise clouds, transients, and quasi-periodic tonal
elements, the proposed system will seek to explain only the
quasi-periodic energy. The system will calculate the sum-
mary autocorrelation over time and will try to identify
sources that account for the peaks by explaining features in
the correlogram like those proposed in Section 3.

There are many problems to address in building such a
system; one of the foremost is of indexing. The system must
be able to choose appropriate explanatory models from a
potentially large library of source models. In the case of
multiple simultaneous sources, where occlusion and mask-
ing is very likely to occur, it is important to be able to
choose such models based on only limited information. One
reasonable approach to solving this problem is to perform
hierarchical classification [11].
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Musical-instrument sounds form a natural hierarchy based
on their acoustic propertiesa hierarchy that largely corre-
sponds with the traditional instrument-family breakdown.
At the highest level, instrument tones are classified as either
transient (percussive) or sustained. Sustained sounds are
further classified as blown or bowed, and the blown tones
may be further divided into brass and woodwind classes.
This hierarchy can be extended to the level of individual
instrument type (e.g., clarinet or violin) and perhaps even
further, to the level of individual performers.

Each of the categories mentioned above has characteristic
acoustic properties. For example, transient sounds have
rapid onsets and decay exponentially. Within the class of
sustained sounds, bowed strings have very long onsets (the
harmonic partials take a long timeoften more than 250
msto reach “steady state”). Within the class of wind in-
struments, brass instruments tend to have simple formant
structures, as well as amplitude “blips” and characteristic
pitch modulations at onset.

The instrument models at each node of the taxonomy must
be coded in some form of representation. A reasonable ap-
proach is to represent models with frames [12] whose slots
correspond to features like those described in Section 3. A
slot may have a default value or a restriction on the accept-
able range of values, and these may be inherited from ab-
stract class prototypes (parents in the hierarchy). For exam-
ple, the trumpet model might inherit a slot describing the
likely presence of amplitude blips at onset from the brass
family model. There may be multiple frames (a frameset)
that describe a single instrument class, perhaps representing
different pitch ranges (registers) or playing styles. For ex-
ample, the high register of the clarinet exhibits more pro-
nounced even harmonics than the low register. When a par-
ticular instrument model is hypothesized to account for a
quasi-periodic sound in an auditory scene, a new instance
of that instrument’s frame is created, and its slot values are
adjusted to match measurements made from the signal.
Multiple hypotheses may be simultaneously entertained
until enough evidence is accumulated to favor a single in-
terpretation of the sound energy.

There are two particularly interesting learning problems
within this framework: learning the taxonomy itself from
examples, and placing a new model within the hierarchy
when a novel source is encountered. With traditional pat-
tern classification and artificial neural network techniques,
the first problem requires that the entire database of sounds
is available during training, and the second problem has no
supported solutions. In a realistic auditory environment, the
principles of auditory scene analysis may be used to group
chains of notes together that are likely to have arisen from
the same source (e.g., a phrase of a melodic line). If none of
the known source models match the assembled data, a new,
unnamed model can be placed within the taxonomy by

adding a new node as a child of the most appropriate ab-
stract parent class.

As stated in the introduction, the proposed system is still in
the early stages of construction. Although I have high ex-
pectations that the described approach will be fruitful, there
is, as yet, no objective proof of the claims made here.
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