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Abstract

The ability of a normal human listener to recognize objects in the environme
from only the sounds they produce is extraordinarily robust with regard to ch
acteristics of the acoustic environment and of other competing sound source
contrast, computer systems designed to recognize sound sources function p
iously, breaking down whenever the target sound is degraded by reverberati
noise, or competing sounds. Robust listening requires extensive contextual 
knowledge, but the potential contribution of sound-source recognition to the 
cess of auditory scene analysis has largely been neglected by researchers bu
computational models of the scene analysis process.

This thesis proposes a theory of sound-source recognition, casting recognitio
a process of gathering information to enable the listener to make inferences a
objects in the environment or to predict their behavior. In order to explore the
process, attention is restricted to isolated sounds produced by a small class
sound sources, the non-percussive orchestral musical instruments. Previous
research on the perception and production of orchestral instrument sounds i
reviewed from a vantage point based on the excitation and resonance struct
the sound-production process, revealing a set of perceptually salient acousti
tures. 

A computer model of the recognition process is developed that is capable of
tening” to a recording of a musical instrument and classifying the instrument
one of 25 possibilities. The model is based on current models of signal proce
ing in the human auditory system. It explicitly extracts salient acoustic featur
and uses a novel improvisational taxonomic architecture (based on simple s
tical pattern-recognition techniques) to classify the sound source. The perfor
mance of the model is compared directly to that of skilled human listeners, u
3
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both isolated musical tones and excerpts from compact disc recordings as te
stimuli. The computer model’s performance is robust with regard to the varia
tions of reverberation and ambient noise (although not with regard to compe
sound sources) in commercial compact disc recordings, and the system per
better than three out of fourteen skilled human listeners on a forced-choice c
fication task.

This work has implications for research in musical timbre, automatic media 
annotation, human talker identification, and computational auditory scene an
sis.

Thesis supervisor: Barry L. Vercoe
Title: Professor of Media Arts and Sciences
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I am sitting in my office, and a Beatles compact disc is playing on my stereo
hear many different sounds, yet I have little difficulty making sense of the mi
ture. I can understand the singer’s words and can tell that it is Paul McCartn
singing. I hear drums, electric guitars, organ, and bass guitar. In addition to t
sounds reproduced by my stereo’s speakers, I can hear cars driving by, the c
of children walking home from the school bus stop, and the humidifier humm
in the hallway. The telephone rings, and I answer it. I recognize my wife’s vo
from a single word (“Hi”), and realize that she is calling to tell me when she w
be home from work. I turn down the stereo to hear her more clearly, and now
can hear that our cat is scratching the sofa in the next room.

These examples are mundane, but they illustrate how easily we gather infor
tion with our ears. The language we use to describe our perceptions is also r
ing. We often describe what we hear in terms of the objects producing the so
and the information that the sounds convey. We hear a dog barking nervously (or 
viciously), a glass breaking, an airplane flying overhead, a bell ringing, a violin-
ist playing a melody, and so on. (Loudspeakers—as in the example above—a
special-case sources that reproduce sounds originally produced by other sou
We routinely understand mixtures of sounds, somehow segmenting, parsing
entangling, or otherwise interpreting the complicated auditory scene that arr
at our ears.

Hearing is an important part of normal human interaction, yet we understand
prisingly little about how our brains make sense of sound. Our limited knowle
is partly a result of the inability to gain conscious access to our perceptual p
cesses, but our language, far removed from sound waves, also limits us. We
9
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difficulty explaining what something sounds like except by analogy to other  
sounds. Our descriptive words for sound—loud, bright, rough, cacophonous
sweet, open, dark, mellow, percussive, droning, scratchy, dull, smooth, scree
pounding, noisy, clanging—are extremely context-dependent, and most of th
have no clear relationship to properties that scientists know how to measure

1.1 Motivation and approach

This dissertation is driven by the desire to understand how human auditory p
ception works. In it, I take the view that the human auditory system is a comp
information-processing system. By considering the constraints under which 
human system operates, the limitations of its “hardware,” and the perceptual
ities and limitations of the listener, it is possible to form theories of the system
operation. The theories can subsequently be tested by constructing and evalu
computational models. In this dissertation, theory refers to an idea or algorithm, 
and model refers to its implementation, usually on a general-purpose comput

Computational models are the best tools we have for understanding comple
tems. By formulating a theory of a system’s operation, constructing a model 
embodies the theory, and then testing the performance of the model, it is pos
to identify the strengths and weaknesses of the theory. Sometimes, the mode
mimic some aspect of the system, and this correspondence can be taken as
dence in favor of the theory. More often, however, the model will fail to accou
for crucial aspects of the system’s behavior. These shortcomings are valuab
because they tell us about the weaknesses of the theory, often highlighting t
assumptions made by the theorist. Models are also valuable because they c
extensively manipulated. By changing parameters or selectively enabling and
abling the model’s components, it is possible to gain insight into the operatio
the system as a whole.

In this dissertation, I describe a theory and computational model of auditory 
sound-source recognition. The theory is a response to ongoing work in the 
nascent field of computational auditory scene analysis (CASA), where syste
are developed to model the process of understanding mixtures of sounds. B
large, current CASA models rely on handfuls of signal-processing technique
and sets of “grouping heuristics” to divide a sound signal into parts arising fr
independent sources. Although some authors have acknowledged the need 
“top-down” processing in auditory scene analysis, current CASA models ma
little use of world knowledge or contextual information to aid the process of 
scene analysis. This contrasts starkly with the human perceptual system, for
which context is indispensable. I view hearing as a complex task similar to 
assembling a jigsaw puzzle, where world knowledge (“ah, that’s a bit of tree 
branch”) can be used to get closer to a solution (“it must go with the other bra
pieces in the corner here”)1. In this view, recognition is intimately tied to the pro

1.  Of course, with hearing, the puzzle is always changing, making it important to ass
ble the pieces quickly!
10 Motivation and approach
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cess of understanding. Complex mixtures would be impenetrable without ex
sive knowledge-based inference. It remains to be seen if models without 
extensive world knowledge can solve any interesting—that is, realistic—percep-
tual problems. So far, there has been no existence proof.

The model I describe operates on recordings of isolated sound sources and 
nizes a limited range of sound-source classes—the non-percussive orchestral 
instruments. It cannot be viewed as a complete model of human sound-sour
recognition. However, I have endeavored to construct a model that could be 
grated into a suitable CASA framework. The representations described here
be extended easily to include other kinds of sound sources. Although the mod
not complete without both pieces, recognizing isolated sound sources is a su
ciently complex problem to merit attention on its own. In the following discus
sion, I point out the additional complexities due to mixtures of sounds when 
relevant.

The ideas described in this dissertation are not the result of my efforts alone.
eral of the techniques I employ are inspired by (or derived from) research in 
visual perception. In particular, my views on representation and modeling ar
strongly influenced by the work of David Marr, and several ideas have been 
adapted from work by Shimon Ullman and Eric Grimson. My views on audito
scene analysis are particularly influenced by the modeling work of Dan Ellis, 
by the writing of Stephen Handel and Stephen McAdams. I have also drawn 
the theories of mind described by Marvin Minsky and Daniel Dennett. At time
employ language reminiscent of the writing of J. J. Gibson and the ecologica
psychologists; their influence is visible most clearly in my experiments, whic
employ real-world stimuli rather than laboratory confections.

1.2 A theory of sound-source recognition

In this section, I outline a general theory of sound-source recognition. In the 
of the dissertation, I will provide evidence that supports some of its elements
demonstrate a computational model based on its principles, and show how t
model recognizes sound sources in a manner similar to humans. The gener
ory of sound-source recognition that I propose can be stated simply. Recogn
is a process—not an achievement or goal. It is the process of gathering inform
tion about objects in the environment so as to more accurately predict or infe
their behavior. I will use the language of classification to describe this proces
but it is important to note that the theory makes no claims about the immane
status of categories. Categories, or classes, are merely groups of objects tha
similar characteristics in some frame of reference. A particular categorization, or 
division of objects into classes, is useful only insofar as knowledge of an obje
category label enables the perceiver to make accurate predictions about som
unobserved aspect of the object.

I adopt the viewpoint that a sound-producing object belongs to various categ
at different levels of abstraction. An illustration of this idea, synthesized from
A theory of sound-source recognition 11
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drawings and discussion by Bobick (1987) and Minsky (1986), is shown in F
ure 1. Some general properties of this organization are worth observing. The
ticular categories shown are not the only possible choices—others might inc
“things Bill likes to listen to,” “brown wooden things,” or “things with ornate 
shapes,” but these latter sorts are not as useful to the recognition process be
they do not permit as many inferences. At the top of the figure is a single cat
gory, labeled “Sound Source,” that contains all sound-producing objects. It d
not, however, allow the perceiver to make inferences much stronger than 
“vibrates somewhere in the frequency range that can cause a human eardru
move.” At the very bottom are categories containing only a single object mak

FIGURE 1. Recognition as classification in a category-abstraction space. The illustration is a 
synthesis of drawings from Bobick (1987) and Minsky (1986). A particular sound 
source—Itzhak Perlman playing a violin—is a member of different categories at 
different levels of abstraction. The arrows indicate that a change in the level of 
abstraction affects both the difficulty of determining the category of an object and 
the amount of information represented by knowledge of an object’s category. The 
shaded regions and their labels correspond to Minsky’s “level-bands.” Minsky 
(1986) argues that there is a privileged level for reasoning and recognition that 
occurs at an intermediate level of abstraction.
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a specific sound. In between, as the level of specificity increases (and the lev
abstraction correspondingly decreases), more specific details are known but 
information is required to choose among the categories. As the level of abstr
tion increases, less information is required to classify an object, but the class
tion does not provide the same predictive strength.

The process of recognition begins at an intermediate level of abstraction, wh
classification is relatively easy but still yields useful information about unob-
served properties. It then proceeds to more specific categories as warranted
the needs of the listener. Sensory data accumulate, and increasingly specific
sifications are made when they are useful. This approach has the benefits th
requires less effort when less-specific information is needed, and that the pe
ceiver need never examine every possible categorization directly.

In this outline, I have purposely provided little detail about the various parts o
the process. In the rest of the dissertation, I fill in the details by proposing a c
putational model of the recognition process. A small set of sound sources, th
non-percussive orchestral instruments, are considered in depth, and the mo
tested with natural recordings of sounds produced by these instruments. Its 
formance on a battery of classification tasks is compared to the performance
human listeners on similar tasks, highlighting the strengths and weaknesses
the model.

This dissertation will not address the acquisition of the category-abstraction 
structure or the development of new feature detectors. These difficult proble
are left for future research.

1.3 Applications

The primary goal of this research is scientific: to present a theory of sound-so
recognition and test it with a computational model. There are also several pr
cal areas in which such a model might be applied, including:

• Media annotation: Over the last two decades, digital media have prolifer
ated. For example, my personal digital-audio library includes well over 5
compact discs, and my laptop computer stores a wide variety of digital 
image, video, and audio files. To the computer or compact-disc player, h
ever, these are merely streams of bits in some coding scheme. They are
verted into images or sounds when I decide to play them. Today, we hav
internet search engines that can identify text documents matching a use
query, but multimedia documents are opaque to search engines. Today’
tems have no way of discovering if a spoken phrase in a recording or an
object in an image matches a query and retrieving the relevant documen

Recently, efforts have begun that will result in standardized “descriptors,
meta-data formats, for multimedia data (MPEG Requirements Group, 199
However, for most of the descriptors we would like to use—in queries su
as “find the cadenzas of all the Mozart concertos in the database, and s
them by instrument” or “find all the photographs of Abraham Lincoln”—w
Applications 13
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have no tools that can extract the relevant information automatically. The
producer of the data must add the meta-data by hand. Sound-source rec
tion—at the level achieved by the model described in Chapters 4 and 5—
could be used at the point of production, where sounds are often isolate
separate channels of a multi-track recording system. Meta-data could be
added before the sounds are mixed together and preserved throughout 
production process. Better yet, recordings could be distributed in structured 
formats (Vercoe et al., 1998) that preserve the isolation of individual sou
until the time of playback, and then techniques like those described here
could be applied by the end-user.

• Talker identification: Identifying a particular human voice is the one exam
ple of sound-source recognition that has received considerable attention
the scientific literature (e.g., Reynolds, 1995). The theory of sound-sourc
recognition described in this dissertation is a general one, and as such c
viewed as a generalization of theories of talker identification. However, t
techniques used here are very different from those typically used to build
talker recognition systems. Some of the acoustic properties determined t
important for recognizing musical instruments may also be important for
recognizing human talkers, and the hierarchical classification framework
described here might be put to good use in speech systems as well.

• Music transcription: The process of listening to a piece of music and 
reconstructing the notated score is known as transcription. More generally, 
transcription is the process of determining which musical notes were played
when (and by what instrument) in a musical recording or performance. In th
general case of music played by multiple instruments (or a single polypho
instrument such as a guitar or piano), the task is one of polyphonic pitch
tracking. This is extraordinarily difficult—humans require extensive trainin
in order to transcribe music reliably. However, because transcription is a
important tool for music theorists, music psychologists, and musicologist
not to mention music lovers who want to figure out what their favorite arti
are playing in rapid passages—it would be wonderful to have tools that 
could aid the transcription process, or automate it entirely. State-of-the-a
polyphonic pitch tracking research demonstrates that the task is made s
pler if good—and explicit—models of the sound sources (the musical ins
ments) are available (Kashino & Murase, 1998). By integrating sound-
source recognition with a transcription engine, the end result can be 
improved dramatically.

• Structured-audio encoding: As noted above, structured-media formats 
make automatic multimedia annotation easier. In addition, they give the 
user more control over the media playback. For example, an audio enthu
could take better advantage of a seven-speaker playback setup if the au
material was not pre-mixed for stereo playback. Movie soundtracks coul
include speech tracks in multiple languages, enabling distributors to prov
only one version of a movie for international presentation. Amateur mus
cians could “mute” a particular part of a recording and play along. 

Although structured formats provide immense advantages over their non
structured counterparts (such as the current generation of compact disc
14 Applications
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videotapes), we currently have no way of automatically adding structure
an unstructured recording. In the future, by combining robust tools from 
sound-source recognition, CASA, music transcription, and speech recog
tion, it may be possible to build fully or partly automated tools for unstruc
tured-to-structured encoding.

• A composer’s workbench: The research described in this dissertation 
embodies a viewpoint on musical-instrument sound that is informed by 
knowledge of human perception. The techniques used to recognize sou
could be inverted and used to create new sounds based on natural, verb
descriptions. With a single workstation including analysis and synthesis 
tools, a composer could more easily create a wide variety of new sound
Virtual instruments could be created—for example, “like a very large bra
instrument, but with a percussive attack and pronounced vibrato”—witho
extensive physical modeling. Automatic indexing would be a valuable to
enabling automatic responses to naturally posed requests such as “play
the part where the clarinet comes in.”

• Environment monitoring: One of the most obvious applications of sound
source recognition is environmental monitoring. A home-monitoring syste
could alert the homeowner if there is someone knocking at the door, if th
baby is crying, or if water is boiling over on the stove. Such systems could
used as the basis of prostheses for listeners with severe hearing loss, co
ing auditory information into another medium, such as a visual display.

• Synthetic listeners and performers: Endowing computer systems with the
ability to recognize sounds and understand the information they convey 
would enable a host of exciting applications. We could build virtual music
instructors (with unending patience!), virtual orchestras to conduct, and 
tual performers to jam with. Although these applications may sound far-
fetched, each has already been demonstrated in some form (Vercoe, 19
Vercoe & Puckette, 1985). 

1.4 Overview and scope

This dissertation makes contributions to modern hearing science at several le
ranging from practical signal-processing techniques to a new philosophical v
point. Among the contributions are:

• A review of musical instrument sound production and perception from a 
fied viewpoint, based on the excitation and resonance structures of the s
sources and on modern hearing models.

• A psychophysical experiment testing human abilities on instrument-class
cation tasks using realistic—that is, musical—recordings of orchestral 
instruments as stimuli.

• A demonstration of the extraction of perceptual features from realistic 
recordings of orchestral instruments made in realistic—that is, noisy and
reverberant—environments.
Overview and scope 15
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• A broad theory of sound-source recognition with applications to human 
talker identification, multimedia annotation, and other areas.

• A computational framework based on the theory, with behavior similar to
that of humans in several important ways.

This dissertation is conceptually divided into three parts. The first part, consis
of Chapters 2 and 3, reviews human and machine sound-source recognition
ties, highlighting many of the constraints under which sound-source recognit
systems operate. The second part, consisting of Chapters 4 and 5, describe
computational architecture for a novel model of sound-source recognition. Th
third part, consisting of Chapter 6, compares the abilities of the artificial syst
to those of humans on a variety of classification tasks.

In Chapter 2, Recognizing sound sources, I review the psychophysical evidence
that shows that a sense of hearing is used to make inferences about objects
world, and that these inferences are based on categorization at various level
abstraction. I claim that knowledge of class membership can be used to help
out the contributions of various sound sources in a complex auditory scene, 
that previous research in computational auditory scene analysis has suffered
ignoring or postponing the potential contributions of sound-source recognitio
describe recognition as a process of refinement that begins at an appropriate
of abstraction and gradually becomes more concrete until sufficiently powerf
inferences can be made for achieving the listener’s goals. I present a set of c
ria for evaluating sound-source recognition systems, and, in light of these crit
compare the state-of-the-art in artificial systems to human abilities. I conclud
with the observation that current artificial systems can recognize either a sm
number of sound-source classes with reasonable generality or a larger numb
classes with very limited generality. One of the challenges for the rest of the 
sertation—and for the next generation of sound-source recognition systems—
to increase the number of classes of sound while maintaining the ability to ge
alize. 

In Chapter 3, Recognizing musical instruments, I restrict attention to a limited 
set of sound sources consisting of the common non-percussive musical instr
ments. I review the extensive literature on the production and perception of 
orchestral-instrument sound, highlighting the constraints of the sound produc
process and the perceptual limitations of human listeners. These are summa
from a viewpoint centered on the excitation and resonance structure of the in
ments, which strongly supports the traditional division into instrument familie
One of the core theses of this dissertation is that many sound sources—inclu
the non-percussive orchestral instruments—are recognized primarily by perc
tion of their excitatory and resonant structures.

In Chapter 4, Representation, I describe a series of representational transform
tions, beginning with an acoustic waveform generated by an isolated sound 
source and resulting in an abstract model of the source’s excitation and reson
structure based on perceptually salient acoustic features. The representation
functionally matched to current models of the human auditory system, becom
increasingly speculative with each level of abstraction away from the sound 
16 Overview and scope
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wave. The description of a particular sound source is refined over time as so
produced by the source are heard. The chapter concludes with a description
taxonomic inheritance hierarchy that contains abstract models for a variety o
sound sources. This hierarchy comprises the knowledge base used during th
ognition process.

In Chapter 5, Recognition, I present a computational framework for sound-
source recognition, based on the theory outlined in Section 1.2 and using the
resentation scheme described in Chapter 4. The framework has conceptual t
the theories of decision trees, spreading activation, and taxonomic Bayesian
belief networks. It employs maximum a posteriori classification within a taxon-
omy of sound-source classes. The basic algorithm is extended with context-
dependent feature selection and beam search. This improvisational algorithm is 
robust, scalable, and flexible. It is sufficiently general to be expanded to a wi
range of sound-source categories, and it does not depend on a fixed set of f
tures.

In Chapter 6, Evaluation, the recognition framework is tested on a battery of 
classification tasks, and its performance is compared to that of human listen
on similar tasks. A listening experiment is performed to evaluate human abili
on musical instrument recognition tasks using both isolated tones and real m
as stimuli. The model described in Chapters 4 and 5 is tested on a forced-ch
classification task using the same stimuli and is shown to exhibit performanc
competitive with experienced musical listeners with both types of stimuli. Fur
ther, the model performs as well or better—and satisfies the evaluation criter
outlined in Chapter 2 more thoroughly—than previous sound-source recogni
systems.

Finally, in Chapter 7, Conclusions and extensions, I evaluate the potential of the
theory of recognition and identify several directions for extending the researc
presented here. Among the conclusions prompted by this work are that “timb
is useless as a scientific concept, and that an ability to resynthesize acoustic
wave-forms is not a necessary component of machine-listening systems.
Overview and scope 17
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For hearing to serve as a useful sensory modality, the listener must be able 
make inferences about sound-producing objects. By recognizing the kind of 
object that is producing a sound, a skilled listener can predict properties of o
sounds the object might produce. Of course, these inferential capabilities are
limited to sonic properties. Knowledge of sound-source identity can be used
infer other characteristics of the sounding object, or can invoke behaviors in the 
listener himself. For example, an animal in the wild might recognize that a pa
ular sound, a “growl,” has been produced by a large nearby predator, and thi
ognition might trigger a “fleeing” behavior. The inferential abilities enabled by
sound-source recognition confer an immense selective advantage to animal
possess them.

This chapter has four main components. First, the complexity of the soundin
world is considered, and some strategies for coping with mixtures of sounds
revealed by research in auditory scene analysis, are presented. Attempts at con-
structing artificial listeners based on the principles of auditory scene analysis
considered, and sound-source recognition is acknowledged as an essential 
ing component of existing systems. Second, the constraints of the sounding wor
are considered, and a set of criteria for evaluating listening systems, both bio
cal and machine, is presented. Third, the abilities of human listeners are revie
in light of these criteria. Artificial recognition systems constructed in several 
domains are similarly reviewed. Finally, the common weaknesses of the artifi
systems are highlighed.
19
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2.1 Understanding auditory scenes

The sounding world is complex. In a typical environment, many objects prod
sound simultaneously, and the listener must somehow organize the complica
auditory scene in such a way that the contributions of each sound source are c
prehended. Auditory scene analysis, an area of psychophysical research, attemp
to explain how a listener understands a continuous sound mixture as arising 
a set of independent sources.

The task of auditory scene analysis is made difficult in part by sound’s transp
ent nature. Each sound source creates small variations in the ambient air pr
sure—sound waves—which travel away from the source. The difficulty arises
because the sound waves from independent sources arrive at the ear as a s
the individual sound waves, and the listener has access only to the mixture. 
Helmholtz observed more than a century ago:

“The ear is therefore in nearly the same condition as the eye would be if it 
looked at one point on the surface of the water through a long narrow tube, 
which would permit of seeing its rising and falling, and were then required to 
take an analysis of the compound waves.” (Helmholtz, 1954, p. 29)

Even without this additional complexity, auditory scene analysis has much in
common with visual scene analysis, which is by no means an easy problem 
solve.

2.1.1 Exploiting environmental constraints

The structure of the world places constraints on sound production. As a field
study, auditory scene analysis is concerned with identifying these constraint
their effect on sound mixtures, and possible strategies for exploiting them to
understanding. In his book that named the field, Bregman (1990) presents a 
such constraints and strategies, along with evidence of their use by human l
ers.

For example, only rarely will independent events appear to be synchronized
sound components that start, end, or change together are likely to have aris
from the same source. The human auditory system is exquisitely sensitive to
simultaneous onsets in different frequency regions, and to coherent modulati
both frequency and amplitude. Objects in the world change slowly relative to
rapid vibrations of sound waves, so two sound components proximate in time
related in some aspect (pitch, loudness, spectral content, etc.) are likely to h
been produced by the same source. By this mechanism, a sequence of pho
may be heard as a sentence unit, or a sequence of notes produced by a mu
instrument may be heard as a melodic phrase.

The proximity constraint leads to the old-plus-new heuristic: “If you can possibly 
interpret any part of a current group of acoustic components as a continuatio
a sound that just occurred, do so” (Bregman, 1990, p. 222). After portions of
auditory scene have been accounted for by “old” sounds, whatever is left can
20 Understanding auditory scenes
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interpreted as belonging to a “new” sound or sounds. This happens at two le
including both short-term prediction based on a sound’s local properties and
longer-term building of auditory streams.

2.1.2 The importance of knowledge

The constraints and strategies described so far do not depend on the particu
contents of the auditory scene or on the listener’s world knowledge, but the k
of sounds in a mixture and the listener’s past experience do greatly affect his
ception. To account for this, Bregman introduces the concept of schemata, or 
learned patterns, which interact with the more general strategies to explain t
auditory scene.

Perhaps the most compelling illustrations of the importance of world knowled
are Warren’s phonemic restoration examples (Warren, 1970; 1999). When a brie
portion of speech sound from a recorded sentence is completely erased and
replaced by an extraneous sound (e.g., a cough), listeners earnestly believe
they have heard the missing sound—indeed, they do not realize that anythin
amiss. The effect applies not only to speech sounds, but also to any sound w
which the listener has experience (one musical example is the restoration of 
from a melody played on a piano (Sasaki, 1980)). The effect depends on the
ity of the extraneous sound to mask, or obscure, the neural representation of the
expected but missing sound:

“If there is contextual evidence that a sound may be present at a given time, and
if the peripheral units stimulated by a louder sound include those which would 
be stimulated by the anticipated fainter sound, then the fainter sound may be 
heard as present. […] But the truly masked signal is no more, and any restora-
tion must be considered a recreation or perceptual synthesis of the contextually 
appropriate sound.” (Warren et al., 1972)

The ability to infer the presence of masked sounds can be partly explained b
short-term prediction based on properties of the preceding sound componen
by interpolation between components preceding and following the interruptin
sound. This, however, does not explain the ability to infer entire speech pho-
nemes as demonstrated by Warren’s examples. Clearly, high-level contextua
knowledge—even, in the case of phonemic restoration, semantic knowledge—is 
used, in what Helmholtz would have called “unconscious inference” (Helmho
1954). It is not clear how important these effects are to everday listening situ
tions, but we must be careful not to underestimate their significance.

2.1.3 Computational auditory scene analysis

Over the last decade, several researchers have attempted to build computat
frameworks that perform auditory scene analysis; the resulting field has bee
called computational auditory scene analysis (CASA). Typically, CASA research 
projects have involved implementation of some small subset of the strategies
gested by Bregman, often in a manner functionally consistent with the early 
stages of the human auditory periphery (as they are currently understood).
Understanding auditory scenes 21
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Ellis (1996) describes several of these systems, with references to their orig
presentation in the dissertations of Cooke (1993), Brown (1992), and Melling
(1991), and a paper by Ellis (1994), as instances of a single structural framew
According to his analysis, the overall structure can be broken into four main 
tions that proceed in sequence (illustrated in Figure 2):

1. Front-end:  All of the systems employ a filter-bank to break the acoustic s
nal into different frequency bands. In the human auditory periphery, this 
function is performed in the cochlea, and this organization by frequency 
region is preserved at higher levels of the auditory system. Each system
includes further processing intended to reveal particular acoustic proper
or “cues.” For example, an “onset map” might be generated to facilitate la
grouping by common onset.

2. Basic representation: In this second stage, the output of the front-end, 
including the cue detectors, is organized into discrete elements, the “ato
which make up auditory objects. Typical elements include “tracks,” repre
senting stable sinusoids that may correspond to harmonic partials, and 
“onsets,” representing abrupt rises in energy that may correspond to the
of a new sound.

3. Grouping algorithm:  In the third stage, a subset of Bregman’s strategies
employed to group elements (from the basic representation) that corresp
to coherent auditory objects. For example, “tracks” with simple frequenc
relationships may form a group corresponding to a harmonic sound.

4. Output assessment / resynthesis: In the final stage, the group representa-
tions from the third stage are converted into a form suitable to the goals 
the system. In some cases, these are acoustic waveforms correspondin
the “separated” auditory objects. 

These early CASA systems suffer from several critical limitations, attributed 
the respective authors, as well as by Ellis) to many factors, including: inadeq
cues, inextensible algorithms, rigid evidence integration, and inability to han
obscured (masked) data. 

Ellis attempted to address these limitations by introducing short-term predict
based on the statistical properties of low-level sound objects (noise clouds, t
sients, and quasi-periodic tonal wefts), to infer masked or obscured information 
(Ellis, 1996). His approach, called prediction-driven computational auditory 
scene analysis (PDCASA), is remarkably successful at grouping low-level time
frequency energy into perceptually salient objects—for example, car horns a
slamming doors in a complex, noisy street scene. In a limited test on a few e
ples, the PDCASA system exhibited good correspondence to human respon
regarding the number of objects in the scene (but not their identities). The 
PDCASA system infers the properties of masked sounds to a small degree, 
is a long way from solving problems like phonemic restoration.

These CASA systems have been constructed with little concern for the actua
contents of the auditory scene. However, the kinds of sounds in the mixture, and 
the listener’s past experience with similar sounds, can have an enormous ef
22 Understanding auditory scenes
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on how an auditory scene is perceived by a human listener. The research pr
sented in this dissertation is a framework for representing and exploiting kno
edge about sound sources. Although the framework presented here does no
constitute a CASA system, it is intended to be integrated with one. By recog
ing the source of a sound, a CASA system would be better equipped to infer
sound’s masked properties. Sound-source recognition is an essential yet lar
overlooked component of auditory scene analysis.

FIGURE 2. Overview of processing flow in CASA architectures, after Ellis (1996).

2.2 Evaluating sound-source recognition systems

Although many sound-source recognition systems have been constructed, it
often very difficult to be objective in evaluating the success of a computation
system at recognizing sounds. The performance of an individual system is o
quantified by its creator as a percentage of “correct” responses in some kind
test scenario, but the scope of the test—and, indeed, the scope of the syste
not often expressed. 

There are several dimensions along which systems differ in competence, an
although they are not easy to quantify, they should be considered carefully w
comparing the abilities of different systems. The following criteria are presen
in roughly descending order of importance.

A sound-source recognition system should:

1. Exhibit generalization. Different instances of the same kind of sound 
should be recognized as similar. For example, a system that learns to re
nize musical instruments should be able to do so in a way that does not 
depend on the particular human performer or the particular acoustic env
ment. Though they may differ in quality, a clarinet played by a student in
dormitory is as much a clarinet as one played by Richard Stoltzman in B

sound

peripheral channels

mask

common-
period
objects

periodic
modulation

onset/
offset

frequency
transition

cochlea
model

object
formation grouping

algorithm
resynthesis

Front-end Basic
Representation

Grouping
Algorithm

Output/
Resynthesis

"cue" maps
Evaluating sound-source recognition systems 23



-
e 
 
 
tele-
tem 
tic-

ed 
rsts 

f 
ur in 

e 
 

but 

era-
r-
y 
ial 
hen 

 
dif-
al 

—
ed 

e 
a 

f 
man 
any 
a-
icat-

t 
ize 

 

ton Symphony Hall. The ideal degree of perceived similarity may be con
text-dependent. For example, in an office it may be important to recogniz
which particular telephone is ringing, whereas in a home it is sufficient to
recognize that it is the telephone, and not the doorbell, that is producing
sound. In the first situation, a system trained to recognize one particular 
phone may suffice, but in the second, it would be more useful for the sys
to recognize the class of sounds telephones make, independent of any par
ular telephone.

2. Handle real-world complexity. Too often, psychoacoustic experiments 
employ simple stimuli that have little relation to sounds that occur in the 
environment. As a result, many computational listening systems are test
only with simple stimuli, such as additive synthesis tones, sine waves, bu
of white noise, sounds recorded in an anechoic chamber, and so forth. I
these systems are tested on ecological signals—signals that actually occ
the real world—it is quickly discovered that the system cannot handle th
additional complexity, noise, temporal characteristics, etc. Many theories
can be made to work on “laboratory sounds” or in thought experiments, 
most fail if tested in real-world scenarios. In a real-world environment, 
sounds are rarely heard in isolation, and acoustic reflections and reverb
tion nearly always affect the sound waves arriving at a microphone or ea
drum. Systems limited to recognizing isolated sources or sound with ver
little reverberation can be useful—as are, for example, current commerc
speech recognition systems—but these limitations must be considered w
comparing systems.

3. Be scalable. The world contains a vast array of sound-producing objects,
and it is hard to pin down even the order of magnitude of the number of 
ferent sounds mature human listeners can recognize. In contrast, a typic
sound-recognition system may be trained on only a few kinds of sounds
perhaps a few tens of sound classes. To evaluate a system with such limit
knowledge, it is necessary to consider the competence of the approach—is 
the system capable of learning to recognize additional sounds, and how 
would such expansion affect its performance? Different sounds may hav
different salient characteristics. It may be important to consider whether 
system’s repertoire of feature detectors can be expanded when additional 
acoustic properties become important.

4. Exhibit graceful degradation. As the level of ambient noise, the degree o
reverberation, or the number of competing sound sources increases, hu
sound-source recognition performance gradually worsens. In contrast, m
machine systems stop working altogether when a certain level of degrad
tion, abiguity, or obscurity is reached. In realistic scenarios, these compl
ing factors obscure portions of the “target” sound. In order to continue 
functioning successfully, a system must have a strategy for handling wha
has been called the “missing feature problem;” it must be able to recogn
the whole from a portion. 

5. Employ a flexible learning strategy. Machine systems that learn are often
classified by whether their learning is supervised or unsupervised. In the 
former case, an omniscient trainer specifies the category of each training 
24 Evaluating sound-source recognition systems
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example at the time of training; in the latter, the system must discover th
categories itself. This division is in itself artificial, however; human listene
make use of both “labeled” and “unlabeled” data as they learn. Many 
machine systems do all of their learning in a large batch, and then rema
fixed as they operate. In contrast, human listeners learn continually, intro
ducing new categories as necessary and refining classification criteria o
time as new examples of previously learned categories are encountered

6. Operate in real-time (in principle). One of the defining characteristics of 
biological listeners is that they interact with their environment on the sam
time scale as the sounds they attend to. In contrast, many computationa
tems rely on having pre-selected segments of sound presented for analy
For example, some “music analysis” systems require that the entire piec
music be presented at once. One of the essential aspects of music, how
is that it takes place over time, setting up expectations in the listener and
either satisfying them or invoking surprise. Requiring an artificial system
operate in real-time is too limiting, yet systems should not require huma
intervention in the form of segmentation into chunks to be processed. To
considered a listener, a system should be real-time in principle. It should 
analyze the acoustic waveform sequentially through time, as it would arr
at a microphone or eardrum.

These six criteria must be considered before comparing the quantitative perf
mance of different systems. Other criteria, which do not bear directly on perf
mance, may also be worth considering. For example, two systems that perfo
equally well on some task and have similar ratings on the foregoing criteria m
still be compared on the basis of complexity: all other things being equal, the
simpler system is better. This simplicity can be in the form of reduced memor
size or processing requirements, or in how easy it is to understand how the s
tem works.

Further, if the goal of building a machine listening system is not to achieve a
ticular level of competence on a given task, but rather to gain insight into the 
workings of a human or animal listener, it is important to consider the similar
between the biological system and the model. In his influential work on mod
of the human visual system, David Marr identified three conceptual levels at
which information-processing systems can be understood (Marr, 1982). The 
and most abstract, is the computational theory, where questions of what the sys-
tem does and why are considered. At the second level, the representation and 
algorithm are considered, and the forms of the system’s input and output, alo
with a method of proceeding from one to the other, are detailed. At the third 
most concrete level, the particular hardware implementation is considered. The 
three levels are loosely related, and systems may be compared at any or all
them. The approach presented here, and its relation to the human auditory s
tem, will be considered in Chapter 4.

A final criteria, one that in many cases should not be used to evaluate machine 
listening systems, is an ability to reproduce the sounds it hears. Recognition ofte
requires much less information than reproduction, and although high-fidelity 
Evaluating sound-source recognition systems 25
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reproduction may be a useful feature, it is in no way a requirement for good 
ognition performance. However, if sound-source recognition is to be used as
of a CASA system, it is important to be able to use source identity to infer th
masked acoustic properties of the sound at some level of representation (tho
most likely not at the waveform level).

As a final note, it is important to keep in mind the semantic differences amon
the words classification, identification, and recognition. In this thesis, recogni-
tion describes a process of gathering information and making inferences, an
classification involves the assigment of a category label. Identification is used to 
describe recognition tasks in which the “allowed” category choices are not p
specified. In Chapters 4 and 5, a recognition model will be described. In Chapter
6, it will be tested on classification tasks. Readers interested in the subtle diffe
ences between the words may find Sayre’s (1965) account to be of interest.

2.3 Human sound-source recognition

Humans can identify many events and objects by sound alone. Our sound-re
nition abilities are either innate or learned very early in development, and we
unable to introspect about how they work. This is an example of what Minsk
calls the amnesia of infancy: “In general, we’re least aware of what our minds d
best” (Minsky, 1986, p. 29). Recognizing objects in the environment is an es
tial survival skill, and nearly all vertebrates recognize sounds (Popper & Fay,
1997). In spite of this, and perhaps because of their introspective opacity, the
cesses underlying sound-source recognition have not been studied in depth.
Much of what we know has been learned indirectly, from psychophysical exp
ments aimed at narrower phenomena. The discussion in this section draws f
two recent, complementary, reviews of such research (Handel, 1995; McAda
1993).

If a particular sound source generated the same sound wave every time, rec
tion would be easy—we could simply (at least in principle) memorize every 
sound and match incoming sound waves to stored patterns in memory. In re
there is enormous variability in the acoustic waves produced by any given so
source at different times. This variation is due in part to the complexity of the
environment—for example, a room’s detailed acoustic response changes wit
movement of any object, with changes in air circulation, and even with shifts
humidity! Natural sounds—that is, sounds not produced by human artifacts—
vary even more from instance to instance because the physical process of s
production is never the same twice. 

The listener must abstract away from the raw acoustic signal in order to disc
the identity of a sound event. Although there is much variability in the acoust
signal, there are often invariants—things that do not change from instance to 
instance—in the sound-production process. For example, the kind of excitati
the way that energy is injected into the physical system, for example by bang
blowing, or scraping—affects the acoustic signal in many ways, both subtle a
26 Human sound-source recognition
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obvious. The material properties and geometry of the vibrating body impose 
straints in a similar but complementary way; for example, they affect the fre-
quency spectrum, onset and offset transients, and transitions between sound
using features that are influenced by these production invariants, it should be
sible to work backward to the invariants themselves, and from there to sound
event identity. Both Handel and McAdams suggest that inference based on t
detection of invariants is the most likely basis for human sound-source recog
tion. It is important, however, to look more deeply than “trivial” invariants, suc
as sound-source identity, that entirely beg the question.

Because excitation and resonance properties simultaneously influence the p
erties of the sound wave, there are many potential acoustic features to be us
recognition. As a consequence, there is no one predominant cue, separate c
are not entirely independent, and the cues a listener actually uses are highly
dependent on the context. Particularly when multiple sounds overlap, it will b
difficult to know in advance which cues will be available—therefore, the lis-
tener’s recognition strategy must be flexible.

McAdams describes recognition as a range of phenomena:

“Recognition means that what is currently being heard corresponds in some way
to something that has been heard in the past…. Recognition may be accompa-
nied by a more or less strong sense of familiarity, by realizing the identity of the 
source (e.g., a car horn), and often by an understanding of what the source being
heard signifies to the listener in his or her current situation, thereby leading to 
some appropriate action.” (McAdams, 1993, p. 147)

His conception of the recognition process, in abstract form, is shown in Figur
(Note the similarities with Figure 2.) McAdams suggests that the process is 
largely sequential: the sound wave is changed, by transduction, into a repres
tion where auditory grouping can take place. Grouped elements are analyze
terms of some set of features, which are then used as the basis of the recog
process. Although McAdams suggests that recognition is subsequent to the 
grouping processes of auditory scene analysis, he leaves room for the possi
of feedback from higher, post-recognition processes—this feedback loop is 
clearly necessary to account for phenomena such as phonemic restoration. 

FIGURE 3. Overview of the stages of auditory processing for sound source recognition, after 
McAdams (1993).
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Psychological studies have shown that human object recognition—in all sen
modalities—occurs at multiple levels of abstraction. Minsky terms these level 
bands, and suggests that one or more intermediate levels of abstraction are p
leged in recognition (Minsky, 1986). To paraphrase his words, beyond a cert
level of detail, increasingly detailed memories of previously observed objects
increasingly difficult to match to new situations. Above a certain degree of 
abstraction, descriptions are not detailed enough to be useful—they do not p
vide any discriminating information. 

This idea is similar to Rosch’s basic level (Rosch, 1978; Rosch et al., 1976). He
research suggests that the kinds of objects in the world form hierarchies in t
mind and that there is a privileged level—the “basic” level—where recognitio
initially takes place. The basic level is where the most information can be ga
(the best predictions or inferences can be made) with the least effort. Basic 
objects can be shown  “to be the first categorization made during perception
the environment, to be the earliest categories sorted and earliest named by 
dren, and to be the categories most codable, most coded, and most necessa
language” (Rosch et al., 1976). To take an example from audition, a sound h
while driving a car might be recognized as a “bad engine noise” before being
classified as a misfiring spark plug. 

Minsky suggests that objects may be organized into multiple hierarchies tha
classify them in different ways. The particular hierarchy used in a given situa
may depend on the context, as may the particular level that is privileged. The
may depend on the set of features currently available from the sensory input
on the current goals of the perceiver. These shifts of level and of hierarchy h
pen very quickly and are mostly inaccessible to introspection.

We should not neglect the feedback mechanisms suggested by McAdams’s 
posed architecture and their importance in thinking about auditory scene ana
sis. Some high-level influences are obvious. Every human listener is exquisi
sensitive to hearing his or her name, even in complex, noisy environments. T
is a great deal of anecdotal evidence that multilingual speakers can understa
speech in their over-learned native language relatively easily in adverse env
ments—they need a higher signal-to-noise ratio to understand speech in the
ondary languages.

More subtly, we use what we know about a particular sound source to fill gap
the available sensory data. As in Warren’s auditory restoration phenomena, 
fill in details with default assumptions based on our expectations. This proce
entirely inaccessible to our consciousness; we are not aware that we are do
and we believe that we are hearing more detail than is actually there to be h
Our perception is a blending of information from sensations and expectation
Indeed, the feedback loops in McAdams’s architecture are essential.

Human listeners outpace machine systems on every criterion considered in 
tion 2.2. We are able to recognize instances from a very large number of gen
classes, in real-world acoustic conditions and under wide ranges of complex
28 Human sound-source recognition
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arising from mixtures of simultaneous sounds. Human recognition degrades
gracefully as conditions worsen. Our learning is extremely flexible—we can f
structure in the world without being given a label for every object, and we lea
continually, adding new object classes throughout our lives. In addition to su
“unsupervised” learning, we can learn new classes by instruction—“Can you
hear that unusual sound in the mix? It’s a digeridoo.” And in many cases, we
need only a few examples—sometimes only one—to learn a new category 
(Sayre, 1965). To top it off, our brains work in real-time, and not just in princi

2.4 Machine sound-source recognition

Many systems have been built to recognize sounds in different domains. To n
a few, systems have been constructed to keep track of when particular adve
ments are played on a television or radio station, to discriminate speech sou
from music, to identify talkers on a telephone, and to recognize musical instr
ments in a recording. In this section, sound-source recognition systems from
eral domains will be considered and evaluated in light of the criteria propose
Section 2.2. Only those machine-listening systems whose goal is to recogniz
sound sources from airborne sound waves will be presented. Automatic spe
recognition systems, where the goal is to recover the message rather than the 
identity of the talker will not be considered. 

2.4.1 Recognition within micro-domains

Several systems have been constructed to recognize examples from very sm
classes of sounds. A typical example of such a system is one constructed to
ognize different kinds of motor vehicles from the engine and road noise they
duce (Nooralahiyan et al., 1998). First, a human-selected segment of sound
waveform is coded by a linear prediction algorithm (LPC). Then, the LPC co
cients are presented to a time delay neural network (TDNN) that classifies th
source of the sound waveform as belonging to one of four categories (rough
trucks, sedans, motorcycles, and vans). 

The authors performed two studies: one with sounds recorded carefully in is
lated conditions, to evaluate the propriety of the feature set; and one with so
recorded on a city street, to evaluate the system in more realistic conditions.
both cases, supervised learning was used. For the city street case, the syste
trained with 450 sounds and tested with 150 independent sounds. The syste
performance was substantially above chance, with correct classification of 9
of the training samples and 84% of the test samples. The TDNN has appare
found some kind of regularity in the features that enables classification, but a
typical of much connectionist research, no attempt was made to discover ex
which aspects of the features were salient.

Examples of systems with similar scopes include non-connectionist approac
to recognition of songs in movie soundtracks (Hawley, 1993; Pfeiffer et al., 
1996). 
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There are a few examples of  “implicit” recognition systems constructed by 
researchers who were investigating the sound-recognition abilities of human
For example, while attempting to understand how people recognize the sex 
person by listening to his/her footsteps, Li et al. (1991) identified a set of acou
properties that correlate with human judgments of walker sex. They used pri
pal-components analysis (PCA) to reduce the dimensionality of the feature s
and constructed a discriminator that correlated strongly with human judgmen
(r=0.82, p<0.05). Another example is a study on human judgments of mallet 
hardness from the sounds of struck metal pans (Freed, 1990).

Micro-domain recognition systems vary greatly in their ability to generalize fro
training samples. This variability can stem from a choice of analysis features
does not adequately capture the structure of the sound class, or from a too-n
range of training examples. Some systems are limited to recognizing pristine
recordings of isolated sounds, but others adapt well to real-world noise. Non
however, are equipped to deal with mixtures of sounds. 

Most micro-domain systems employ techniques from statistical pattern-recog
tion (e.g., neural networks or maximum-likelihood classifiers) within a super-
vised learning framework. As with nearly all artificial sound source recognitio
systems, the sound samples used to train and test these systems are pre-se
(and even pre-segmented, thereby eliminating real-time applications) by hum
operators. Most often, the systems are not given a “don’t know” option for ca
when a sound sample falls outside their domain of knowledge. It is uncertain
whether micro-domain approaches can scale to larger numbers of classes, n
only because their range of feature-detectors may be too small, but also bec
their recognition frameworks are relatively inflexible.

2.4.2 Recognition of broad sound classes

A typical example of recognizing examples from broad sound classes is spe
music discrimination, which has applications in automatic speech recognition
and soundtrack segmentation, for example. There are many examples of su
systems (e.g., Spina & Zue, 1996; Scheirer & Slaney, 1997; Foote, 1997; Ha
al., 1998; Minami et al., 1998), but the system described by Scheirer and Sla
appears to be the most general and the best able to handle real-world comp

Scheirer and Slaney considered 13 features and extensively tested four diffe
multidimensional classification frameworks with various feature combination
An extensive corpus of training and test data was recorded from FM radio st
tions in the San Francisco Bay area, covering a variety of content styles and 
levels. Several twenty-minute sets of data were recorded, each consisting of
hand-labeled, fifteen-second samples. 

In each classifier, learning was supervised, using 90% of the samples in a se
training, and reserving 10% for testing (never splitting a 15-second sample). 
best classifier, which used only 3 of the 13 features, had 5.8% classification e
on a frame-by-frame basis, and the error rate dropped to 1.4% by integrating
eral frames (over 2.4 seconds). All of the classifiers tested were capable of r
30 Machine sound-source recognition
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time performance in principle, and the best classifier was able to run in real-
in software on a workstation. As is true in most domains where appropriate f
tures are selected, the particular classification technique did not affect perfor
mance—several different algorithms gave rise to similar performance levels.

At least one system has been built that expands the range of allowable categ
beyond music and speech in a sound-retrieval application (Wold et al., 1996
allows a human user to specify an arbitrary class of sounds by providing a s
number of examples. The system uses a feature vector made up of perceptu
motivated acoustic properties (for example, correlates of loudness, pitch, bri
ness, bandwidth, and harmonicity, as well as their variation over time) to form
Gaussian model for the sound class. It then uses the Mahalanobis distance (w
takes into account the relative ranges of the various features, and also inter-
ture correlation) to retrieve similar sound examples from a database of recor
ings. 

It is difficult to evaluate the performance of a system on such a subjective ta
but the authors give several examples of intuitively reasonable classification 
based on categories such as laughter, female speech, and telephone touch-
The approach seems appropriate for general, high-level classes, but becaus
uses only gross statistical sound properties, it may not be able to make fine 
distinctions (e.g., particular human talkers or musical instruments) without co
siderable additional front-end complexity.

Like the micro-domain examples, broad-class systems such as these emplo
tistical pattern-recognition techniques within a supervised learning paradigm
some cases, they have demonstrably generalized from their training exampl
and can recognize new examples drawn from the classes they have learned
systems described above operate on real-world recordings, using surface pr
ties of sound mixtures rather than features of isolated sounds—indeed, igno
the fact that the sounds are typically mixtures. It is difficult to judge the scala
ity of these systems. The features used in the speech/music discrimination s
tems are specifically tuned to the particular task; Scheirer and Slaney even p
out that the features do not seem to be good for classifying musical genre. T
sound-retrieval system seems to be more flexible, but quantitative test result
have not been published. This is emblematic of the vast quality differences 
between evaluation processes. Extensive, quantitative cross-validation, as p
formed by Scheirer and Slaney, is necessary for honest system evaluation, b
often it is sidestepped.

2.4.3 Recognition of human talkers

Many systems have been built to identify human talkers (Mammone et al., 1
gives an overview of several different approaches). Most employ statistical p
tern-recognition techniques within a supervised-learning framework, using in
features motivated by consideration of human perception. The research desc
by Reynolds (1995) is typical of the scope of such systems.
Machine sound-source recognition 31
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Reynolds’s system, like many others, uses mel-frequency cepstral coefficien
(MFCC) as input features. These coefficients, in this case based on 20 ms w
dows of the acoustic signal, are thought to represent perceptually salient asp
of human vocal-tract resonances (formants); the frequencies and bandwidths of 
these resonances are known to be important for talker identification by huma
(Brown, 1981). Given a recorded utterance, the system forms a probabilistic
model based on a mixture of Gaussian distributions. During training, these m
els are stored in memory. To recognize a novel utterance, the system finds t
model that is most likely to have produced the observed features.

The performance of the system depends on the noise characteristics of the s
and on the number of learned models (the population size). With pristine record-
ings, performance is nearly perfect on population sizes up to at least 630 tal
(based on experiments with the TIMIT database). Under varying acoustic co
tions (for example, using telephone handsets during testing that differ from th
used in training), performance smoothly degrades as the population size 
increases; on the Switchboard database, correct classification rates decreas
from 94% to 83% as the population size grew from 10 to 113 talkers.

Systems constructed to date have relied on only a subset of the acoustic pro
ties human listeners use for talker identification. Approaches that use only lo
order cepstral coefficients do not have access to information about the funda
tal frequency of the speaker’s voice, which is known to be an important cue f
human listeners (Brown, 1981; van Dommelen, 1990). Speech rhythm, whic
also a salient cue for humans (van Dommelen, 1990), has not been used in 
tems built to date.

Talker identification systems suffer from lack of generality—they do not work
well when acoustic conditions vary from those used in training. From that pe
spective, they do not handle real-world complexity adequately. Also, they rec
nize only utterances from isolated talkers; they can not deal with mixtures of
sounds. The approaches used in these systems scale reasonably, to much l
numbers of sound classes than systems in the other domains considered so
but performance suffers as the population size grows.

2.4.4 Recognition of environmental sounds

Although few systems have been built to recognize specific sound sources o
than human talkers or musical instruments, two such systems are worthy of 
tion. The Sound Understanding Testbed (SUT) recognizes instances of spec
household and environmental sounds (Klassner, 1996), and Saint-Arnaud’s s
tem recognizes sound textures (Saint-Arnaud, 1995).

SUT was constructed as a trial application for the Integrated Processing and
Understanding of Signals (IPUS) blackboard architecture, which implements
simultaneous search for an explanation of a signal and for an appropriate fro
end configuration for analyzing it (Klassner, 1996). SUT operates in an audio
analog of the “blocks world” of vision AI. Whereas early AI systems perform
visual scene analysis in highly constrained environments, SUT performs aud
32 Machine sound-source recognition
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scene analysis on mixtures of sounds from a small library of sources. The IP
architecture and the knowledge base in SUT are constructed to be very clev
about applying signal-processing domain knowledge to identify distortions a
ing from particular settings of the front-end signal-processing network and to
adapt to them.

SUT employs several levels of feature abstraction, based in large part on sin
dal-analysis techniques. Representations begin with the spectrogram and in
sity envelope, and continue through “peaks” representing narrow-band portio
of the spectrum, “contours” made up of groups of peaks with similar frequenc
to “micro-streams” made up of sequences of contours, and finally to “stream
and “sources.”

SUT has a library of 40 sounds that it can recognize. Each sound model (co
ing, for example of several “streams”) was derived by hand from at least five
instances of each sound. Each model represents a particular instance of a s
source rather than a general class (e.g., the sound of one viola note rather th
class of all viola sounds). The collection of models is eclectic, including two p
ticular alarm clocks (one analog bell-and-ringer style and one electronic), a b
a bicycle bell, a bugle call, a burglar alarm, a car engine, a car horn, a chicke
cluck, a “chime,” a clap, a clock chime, a clock tick, a cuckoo clock, a doorbe
chime, a door creak, a fire engine bell, a firehouse alarm, a foghorn, a set of
steps, a glass clink, a gong, a hairdryer, a door knock, an oven buzzer, an ow
hoot, a pistol shot, a police siren, an electric razor, two smoke alarms, a telep
dial, a telephone ring, a telephone dial tone, a triangle strike, a truck motor, 
vending machine hum, a viola note, and the wind.

SUT was tested on mixtures constructed by placing four independent sound
from the library randomly in a five second recording. Two conditions were tes
In one, SUT was given a minimal library consisting of just the sound sources
actually present in the recording; in the second, all 40 models were provided.
system’s task was to identify which sounds occurred and when. A correct ide
fication was credited when SUT chose the right model and estimated a time r
that overlapped the actual time of sounding. In the first scenario, the system 
tified 61% of the sounds correctly; in the second, the recognition rate droppe
slightly to 59%. No information has been reported about the kinds of mistake
that were made (for example, whether one telephone was confused with the
other).

Because of the limited available information, it is difficult to evaluate SUT’s p
formance as a recognition system. Based on the simplicity of the sound mod
and the limited range of training data, it is likely that SUT can only recognize 
particular sound instances it was trained with, rather than the general classe
those sounds represent. In the evaluation process, real world complexity wa
ited to artificially-produced mixtures of sounds. Although SUT’s success on s
mixtures is praiseworthy, it should not be taken as a prediction of performanc
naturally occurring sound mixtures. Learning in SUT takes place only in the fo
of hand-coded source models, and it is not clear whether the range of mode
Machine sound-source recognition 33
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could be expanded while maintaining the current performance level. On the o
hand, SUT is the first system to attack the auditory scene analysis problem w
extensive world-knowledge, and as such, it is a step in the right direction.

Saint-Arnaud explored a range of little-studied sounds that he termed textures 
(Saint-Arnaud, 1995). He likens sound textures to wallpaper: they may have l
structure and randomness, but on a large scale the structure and randomnes
be consistent. Examples of sound textures include bubbling water, the noise
photocopier, and a large number of whispering voices. Saint-Arnaud collecte
set of sample textures and performed a psychophysical experiment to determ
whether humans perceived textures as members of high-level classes. Indee
found that people classify sound textures by the kind of source, such as wat
voices, or machines, and by acoustic characteristics, such as periodicity or n
ness.

After studying human responses, Saint-Arnaud attempted to build a compute
classifier that might match them. He used a cluster-based probability model 
the patterns of energy outputs of a 21-band constant-Q filter bank to form mo
for segments from 12 recordings of different sound textures. Using a custom
“dissimilarity” metric, the system compared models derived from test sample
stored models from the training samples, assigning the test sample the high-
class of the closest training sample. Fifteen samples were tested, including a
tional segments from the 12 training sounds. Three of the test samples were
classified. Saint-Arnaud warns against drawing any general conclusions from
small example, but suggests that the results are encouraging.

2.4.5 Recognition of musical instruments

Several musical instrument recognition systems have been constructed durin
last thirty years, with varying approaches, scopes, and levels of performance
Most of these have operated on recordings of single, isolated tones (either sy
sized or natural), but the most recent have employed musical phrases record
from commercial compact discs.

De Poli and his colleagues constructed a series of Kohonen Self-Organizing-
(SOM) neural networks using inputs based on isolated tones (Cosi et al., 
1994a,b,c; De Poli & Prandoni, 1997; De Poli & Tonella, 1993). In each case
one tone per instrument was used (with up to 40 instruments in a given expe
ment), with all tones performed at the same pitch. Various features of the ton
(most often MFCC coefficients) were used as inputs to the SOM, in some ca
after the dimensionality of the feature space was reduced with principal com
nents analysis. The authors claim that the neural networks can be used for c
fication, but in no case do they demonstrate classification of independent tes
data.

In a project of similar scope, Feiten and Günzel (1994) trained a Kohonen S
with spectral features from 98 tones produced by a Roland SoundCanvas sy
sizer. They authors claim that the network can be used for retrieval applicatio
but no evaluable results are provided.
34 Machine sound-source recognition
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Kaminskyj and Materka (1995) compared the classification abilities of a feed
forward neural network and a k-nearest neighbor classifier, both trained with
tures of the amplitude envelopes of isolated instrument tones. Both classifier
achieved nearly 98% correct classification of tones produced by four instrum
(guitar, piano, marimba, and accordion) over a one-octave pitch range. Altho
this performance appears to be excellent, both the training and test data we
recorded from the same instruments, performed by the same players in the 
acoustic environment. Also, the four instruments chosen have very distinctiv
acoustic properties, so it is unlikely that the demonstrated performance wou
carry over to additional instruments or even to independent test data.

Langmead (Langmead, 1995a,b) trained a neural network using several inst
ment-tone features based on sinusoidal analysis. He writes “the trained netw
has shown success in timbre recognition” (Langmead, 1995a), however, no 
details are provided.

At least two authors have applied traditional pattern-recognition techniques to
isolated-tone classification problem. Bourne (1972) trained a Bayesian class
with perceptually-motivated features, including the overall spectrum and the 
tive onset times of different harmonics, extracted from 60 clarinet, French ho
and trumpet tones. Fifteen tones were used to test the system (8 of which w
not used in training), and the system correctly classified all but one (approxi-
mately 93% correct classification). More recently, Fujinaga (1998) trained a k
nearest neighbor classifier with features extracted from 1338 spectral slices 
resenting 23 instruments playing a range of pitches. Using leave-one-out cro
validation with a genetic algorithm to identify good feature combinations, the
system reached a recognition rate of approximately 50%.

In an unpublished report, Casey (1996) describes a novel recognition framew
based on a “distal learning” technique. Using a commercial waveguide synth
sizer to produce isolated tones, he trained a neural network to distinguish 
between two synthesized instruments (brass and single-reed) and to recove
synthesizer control parameters. His approach can be viewed as modeling th
dynamics of the sound source, and as such may be thought of as a variant o
motor theory of speech perception. Although “recognition” results were not 
quantified as such, the low “outcome error” reported by Casey demonstrates
success of the approach in the limited tests. 

Several authors working on CASA research have built systems that can be c
sidered as instrument recognizers. Brown and Cooke (1994) built a system t
used similarity of “brightness” and onset asynchrony to group sequences of n
from synthesized brass/clarinet duets. Segregation was successful on 9 out 
notes in a short example, but the instruments were not recognized per se.

Kashino and his colleagues have constructed a series of systems to perform
phonic pitch tracking on simple music. Their earliest system, using harmonic
mistuning and onset asynchrony, correctly recognized the source of 42 flute
cembalo notes played by a sampling synthesizer (Kashino & Tanaka, 1992).
Machine sound-source recognition 35
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Later systems, using more features, were able to identify the sources of note
produced by clarinet, flute, piano, trumpet, and violin in “random chords” (Ka
ino et al., 1995; Kashino & Tanaka, 1993). The authors used an unusual eva
tion metric, but reported intriguing results. Their most recent systems, using 
adaptive templates and contextual information, transcribed recordings of a tr
made up of violin, flute, and piano (Kashino & Murase, 1997; 1998). When t
pitch of each tone was provided, the system identified the source of 88.5% o
tones in a test recording. An auxiliary report suggested the use of a hierarch
sound models—a “sound ontology”—to enable recognition of a larger range
sound sources, but no new recognition results were reported (Nakatani et al
1997).

Until very recently, there were no published reports of musical instrument re
nition systems that could operate on realistic musical recordings, but three s
systems have been described in the last two years. In all three cases, the au
applied techniques commonly used in talker-identification and speech recog
tion.

Brown (1997a,b; 1999) has described a two-way classifier that distinguishes
oboe from saxophone recordings. A Gaussian mixture model based on cons
Q cepstral coefficients was trained for each instrument, using approximately
minute of music each. On independent, noisy samples from commercial reco
ings, the system classified 94% of test samples correctly. Brown has extend
this work with a four-way classifier that distinguishes among oboe, saxophon
flute, and clarinet (Brown, 1998b,c), getting “roughly 84%” correct classificati
on independent test data (Brown, 1998a, personal communication).

Dubnov and Rodet (1998) used a vector-quantizer based on MFCC features
front-end to a statistical clustering algorithm. The system was trained with 18
short excerpts from as many instruments. No classification results were repo
but the vector-quantizer does appear to have captured something about the 
“space” of instrument sounds. Although there is not enough detail in the pap
evaluate the results, the approach seems promising.

Marques (1999) constructed a set of 9-way classifiers (categories were bagp
clarinet, flute, harpsichord, organ, piano, trombone, violin, and “other”) using
several different feature sets and classifier architectures. The classifiers wer
trained with recordings of solo instruments from commercial compact discs a
“non-professional” studio recordings, and were tested with independent mat
taken from additional compact discs. The best classifiers used MFCC featur
correctly classifying approximately 72% of the test data. Performance droppe
approximately 45% when the system was tested with “non-professional” rec
ings,1 suggesting that the classifier has not generalized in the same way as h

1. The “non-professional” recordings were a subset of the student recordings describ
Chapter 6. They were made in a non-reverberant space (the control room of a reco
studio) with a high-quality cardioid microphone placed approximately one meter in
front of the musician. (I traded recordings with Marques on one occasion.)
36 Machine sound-source recognition
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listeners (who do not have difficulty recognizing the instruments in the “non-p
fessional” recordings, as will be demonstrated in Chapter 6).

Perhaps the biggest problem in evaluating musical-instrument recognition sy
tems is that very few systems have been extensively evaluated with indepen
test data. Until such testing is done, one must not assume that these system
demonstrated any meaningful generality of performance. 

2.5 Conclusions and challenges for the future

Human listeners outpace machine systems on every criterion considered in 
tion 2.2. The recognition machinery in the human brain is well suited—much
more so than any artificial machinery we know how to build—to the complex
acoustic environments we inhabit. Currently, we can build artificial systems t
can recognize many different sound sources under laboratory conditions or a
small set of sources under more relaxed conditions. Figure 4 (next page) po
tions recognition systems from the domains considered in Section 2.4 on the
two critical axes. The challenge that faces us is to build systems that can rec
nize more classes of sound sources with increased generality and under con
tions of real-world complexity. The framework described in the following 
chapters extends the range of artificial systems, reducing the gap between 
humans and machines.

FIGURE 4. Comparison of human and machine abilities. Humans are much better able to 
recognize—across the board—general classes of sounds than are the current 
state-of-the-art in machine systems, particularly as the number of sound-source 
classes under consideration grows beyond three or four.
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The most difficult tasks in building a successful information-processing syste
are discovering the constraints underlying the problem domain and determin
which features arising from the constraints are best adapted to the task at ha
As David Marr writes:

“[F]inding such constraints is a true discovery—the knowledge is of permanent 
value, it can be accumulated and built upon, and it is in a deep sense what make
this field of investigation into a science” (Marr, 1982, p. 104)

For this thesis, I chose the goal of recognizing musical instruments in large p
because so much prior research had been done to uncover the constraints a
tures exploited by human listeners. In no other area of hearing research—wit
possible exception of speech—have the relevant acoustics and psychoacou
been studied in such depth. Much is known about musical instrument sound
particularly those sounds produced by traditional Western orchestral instrume
so it is with these sound sources that the rest of this dissertation is primarily 
cerned.

This chapter has four sections. First, we will consider human abilities on the 
of recognizing Western orchestral instruments. Second, relevant research in
musical acoustics, psychophysics, and analysis-by-synthesis will be conside
Much of this research can be unified within a framework based on the excita
and resonance structures of the instruments. In light of the unified structural
framework, a summary of Chapters 2 and 3 will be presented, culminating w
partial list of acoustic features relevant to musical instrument recognition.
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3.1 Human recognition abilities

Recognizing musical instruments is a basic component of listening to many k
of music, and it is considered to be a natural and easy task for many people
example, Robert Erickson writes:

“Anyone can recognize familiar instruments, even without conscious thought, 
and people are able to do it with much less effort than they require for recogniz-
ing intervals, harmonies, or scales.” (Erickson, 1975, p. 9)

Unfortunately, this common perception is not entirely accurate. In spite of the
wide range of research effort in musical acoustics (which will be considered 
Section 3.2), very few researchers have tested how reliably people can iden
musical instruments. And nearly all of the published research has used rathe
unnatural testing conditions, asking subjects to identify instruments from sin
isolated tones with little or no contextual information. This contrasts starkly w
natural listening situations, where melodic phrases consisting of multiple not
are typically heard. Although the studies provide only limited information abo
natural listening contexts, several general results have been suggested.

It is easier to identify the source of an isolated tone when the attack transien
the tone’s onset—is present. According to Kendall (1986), Stumpf noted this
early as 1910 (Stumpf, 1926). This result has been confirmed many times (e
Eagleson & Eagleson, 1947; Berger, 1964; Saldanha & Corso, 1964; Thaye
1972; Volodin, 1972; Elliott, 1975; Dillon, 1981) but has been rejected by Ke
dall (1986), who did not find such an effect.

Some instruments are more easily identified than others, although different s
ies have revealed different orderings, and the results appear to be strongly d
dent on the context provided by the experiment. In a study with tones from n
instruments (violin, alto horn, trumpet, piccolo, flute, clarinet, saxophone, be
and cymbals) playing isolated tones at middle-C (approximately 261 Hz), vio
trumpet, and bells were easiest to identify, and alto horn, piccolo, and flute w
most difficult (Eagleson & Eagleson, 1947). Saldanha and Corso (1964) teste
trained musicians with isolated tones from ten instruments (clarinet, oboe, flu
alto saxophone, French horn, trumpet, trombone, violin, cello, and bassoon)
three pitches (C4, F4, and A4; approximately 261 Hz, 349 Hz, and 440 Hz 
respectively). They found that the clarinet was easiest to identify (84% corre
identifications), followed by oboe (75%) and flute (61%). Violin (19%), cello 
(9%), and bassoon (9%) were the most difficult. Berger (1964) tested univer
band performers with tones from ten instruments (flute, oboe, clarinet, tenor
ophone, alto saxophone, cornet, trumpet, French horn, trombone, and barito
playing at 349 Hz (F4). He found that the oboe was easiest to identify and tha
flute and trumpet were the most difficult.

Several authors noticed particular patterns in the mistakes made by subjects
Saldanha and Corso (1964) found that subjects commonly confused bassoon
saxophone; oboe with English horn; trumpet with cornet, saxophone, and En
horn; and trombone with French horn, saxophone, and trumpet. Berger (196
40 Human recognition abilities
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noted confusions between alto and tenor saxophone; cornet and trumpet; an
French horn, baritone, and trombone. A series of experiments in Melville Cla
laboratory at MIT provided compelling evidence that the most common confu
sions occur between instruments in the same family, and often in tight family sub-
groups. For example, Robertson (1961) found evidence for a coherent brass
ily and sub-families for violin and viola (strings); cello and double bass (string
and oboe and English horn (double reeds). Schlossberg (1960) additionally f
sub-families for trombone and trumpet (brass); and French horn and trombo
(brass). Milner (1963) found that musicians make fewer between-family conf
sions than do non-musicians.

Most studies have found that some people are much better than others at ide
ing musical instruments. As just stated, Milner (1963) found that musicians m
fewer between-family confusions than do non-musicians. Kendall (1986) fou
that university music-majors performed better than non-majors. However, the
“superiority” of trained musicians is not absolute. Eagleson and Eagleson (19
found that musicians did not perform statistically better than non-musicians 
their experiment. Indeed, their best-performing subject had never played a m
cal instrument. However, instrument identification is a skill that must be deve
oped. In agreement with this view, Saldanha and Corso (1964) noted that th
subjects performed significantly better with practice at their identification task

Several other results, with only limited supporting evidence, are also of inter
Saldanha and Corso (1964) found that identification performance depends o
pitch of the isolated tone in question; their subjects performed better at F4 (3
Hz) than at C4 (261 Hz) or A4 (440 Hz). The presence of vibrato (roughly, s
soidal pitch modulation with a frequency near 6 Hz and a depth on the order
1%) makes identification easier (Robertson, 1961; Saldanha & Corso, 1964)
Several authors have suggested that note-to-note transitions may be importa
cues for identification (e.g., Milner, 1963; Saldanha & Corso, 1964). Accordin
to Kendall (1986, p. 189):

“Campbell and Heller (1979; 1978) identified a third category of transient, the 
legato transient, existent between two sounding tones. Using six instruments 
playing a major third (F to A), they found that signals containing transients 
allowed more accurate identification of instrument type than those without, 
except for 20-msec attack transients.”

Actual performance levels vary a great deal between studies. Eagleson and 
Eagleson (1947) report correct-identification percentages between 35-57% o
free-response task. As mentioned above, Saldanha and Corso’s (1964) resu
depended strongly on the instrument tested, from 9% for cello and bassoon 
chance on their 10-way forced-choice task) to 84% for clarinet. Strong’s (196
subjects correctly identified 85% of the test samples on an 8-way forced-cho
task (94% when within-family confusions were tolerated). Berger’s (1964) su
jects correctly identified 59% of the test samples (88%, tolerating within-fam
confusions) on a 10-way forced-choice task. Kendall’s (1986) subjects, on a 
way forced-choice task, correctly recognized 84% of the test samples.
Human recognition abilities 41
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In a groundbreaking study, Kendall (1986) questioned the applicability of the
isolated-tone studies to realistic listening situations. Because isolated tones 
such unusual, unnatural sounds, experiments using them do not necessarily
to any useful conclusions about sound-source recognition. To test his ideas,
dall compared his subjects’ ability to recognize musical-instrument sounds in
several situations, ranging from rather unnatural isolated tones with truncate
onsets and offsets to phrases recorded from performances of folk songs (inte
to represent “natural” musical signals). Intermediate conditions tested recog
tion of phrases with attack- and note-to-note transients removed, and with st
state components removed (leaving only the transients).

The results showed that transients are neither sufficient nor necessary for re
nizing instruments from musical phrases. In contrast, the “steady-state” is bo
necessary and sufficient for recognizing trumpet and violin from phrases, an
sufficient but not necessary for recognizing clarinet from phrases. In isolated
tone conditions, “transient-only” stimuli were equally recognizable as “norma
and “steady-state only” stimuli. Kendall’s subjects performed significantly bet
in whole-phrase contexts than with isolated tones. Music majors correctly ca
rized 95% of the phrase stimuli (non-majors scored 74%). On unaltered isola
tones, music majors scored 58% (non-majors scored 50%).

My interpretation of Kendall’s results is cautious. His test recordings included
examples from only three instruments (clarinet, violin, and trumpet), each fro
different family, and his experiments used a 3-way forced-choice paradigm. 
clear, however, that instrument identification is easier in whole-phrase conte
than with isolated tones, and it is likely that transients, both in the attack and
note-to-note transitions, convey less information than the quasi-steady-state
whole-phrase contexts.

Two recent studies are worthy of mention. Crummer (1994) measured event
related potentials (a gross electrical measurement of brain activity) in subjec
performing a musical recognition task. His results demonstrate that expert m
cians perform such tasks with less effort than do non-musicians. This highlig
the importance of learning in sound-source recognition. In a series of recent
experiments, Sandell and his colleagues (e.g., Sandell & Chronopoulos, 199
1997) have demonstrated that listeners learn to distinguish similar musical in
ments (for example, oboe and English horn) better when trained with multipl
notes—at different pitches—than when trained with one note at a time. Whe
trained with notes from a limited pitch range, listeners trained in multiple-not
contexts generalize better to new, out-of-register, notes than do listeners tra
with single tones. 

3.2 Musical instrument sound: acoustics and perception

Over the last century-and-a-half, the sounds produced by Western musical in
ments, and their perception by human listeners, have been studied in great d
beginning with the pioneering work of Helmholtz and Seebeck and leading to
42 Musical instrument sound: acoustics and perception
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latest issue of the Music Perception. Musical instrument sounds have been stud
ied from three complementary perspectives: through musical acoustics, thro
psychophysical experimentation, and through analysis-by-synthesis. There are no 
clear-cut boundaries between these perspectives—researchers often work in
than one area—so the following discussion draws liberally from all three.

Readers interested in more material on these subjects are in luck—there are
sands of relevant journal articles and books. Books by Fletcher and Rossing
(1998) and Benade (1990) summarize the acoustics of musical instruments r
well, and often in great depth. Classic texts on the human perception of mus
sound include those by Helmholtz (1954) and Plomp (1976); a book and cha
(1995) by Handel bring the early work up to date. Publications in analysis-by
synthesis are more scattered. Risset and Wessel (1982) is a classic. Road’s
The Computer Music Tutorial (Roads, 1996), is an extensive annotated biblio-
graphical history of musical synthesis techniques.

3.2.1 An aside on “timbre”

Much of the psychophysical research on musical sound falls under the rubric
“timbre.” Timbre is a nebulous word for a perceptual quality (as opposed to a
physical quantity) in addition to loudness, pitch, and duration. Debate over th
term continues even today (e.g., Houtsma, 1997), though the closest thing to
accepted definition has not changed in decades:

“[Timbre is] that attribute of auditory sensation in terms of which a listener can 
judge that two sounds similarly presented and having the same loudness and 
pitch are dissimilar….[T]imbre depends primarily upon the spectrum of the 
stimulus, but it also depends upon the waveform, the sound pressure, the fre-
quency location of the spectrum, and the temporal characteristics of the stimu-
lus” (American Standards Association, 1960, p. 45)

Unfortunately the word has no useful scientific meaning. It is, as Bregman (19
notes, a wastebasket category—a holistic word, analogous to appearance in 
vision. It means different things to different people in different contexts, and 
encompasses many different features and qualities—indeed, as early as 189
Seebeck listed at least 20 semantic scales relevant to it (Plomp, 1976), and 
holtz’s translator, A. J. Ellis, hated the way the word had come to be used. H
wrote:

“Timbre, properly a kettledrum, then a helmet, then the coat of arms surmounted 
with a helmet, then the official stamp bearing that coat of arms (now used in 
France for a postage label), and then the mark which declared a thing to be wha
it pretends to be, Burns’s ‘guinea’s stamp,’ is a foreign word, often odiously mis-
pronounced, and not worth preserving.” (Helmholtz, 1954, p. 24)

 Although the word timbre appears in the abstract of this dissertation, in the 
vious two paragraphs, and briefly in the conclusions of Chapter 7, it is not us
anywhere else in this dissertation. It is empty of scientific meaning, and shou
be expunged from the vocabulary of hearing science.
Musical instrument sound: acoustics and perception 43
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3.2.2 The magnitude spectrum

The modern history of musical-sound research begins in the early 19th century 
with Fourier’s theorem (Fourier, 1822), which proved—among other things—
that any periodic signal can be expressed as a sum of sinusoids whose freq
cies are integer multiples of a fundamental (whose frequency is the inverse o
signal’s period). Ohm, better known for his contributions to the theory of elec
ity, observed that the human ear performs a kind of frequency analysis and c
cluded that it analyzes sound waves in terms of sinusoids—a Fourier spectru
(Helmholtz, 1954). Helmholtz, the great German scientist (and an endless so
of quotations for hearing researchers), expressed Ohm’s law as an analysis of 
sound “into a sum of simple pendular vibrations” (Helmholtz, 1954, p. 33). H
proposed a high-level sound taxonomy, dividing sounds into “noises” and “m
cal tones” (which were defined to be periodic). According to his theory, musi
tones are perceived in terms of the magnitudes of their Fourier spectrum com
nents—as opposed to their phases, which he believed to be irrelevant:

“The quality of the musical portion of a compound tone depends solely on the 
number and relative strengths of its partial simple tones, and in no respect to 
their differences of phase.” (Helmholtz, 1954, p. 126)

Since Helmholtz, there has been a figurative tug-of-war between proponents
his “spectral theory” of musical sound and researchers who recognized the 
importance of sound’s temporal properties. Analysis-by-synthesis research, by 
trying to discover methods for synthesizing realistic sounds, has revealed se
critical limitations of purely spectral theories. Clark demonstrated that recordi
played in reverse—which have the same magnitude spectra as their normal 
terparts—make sound-source identification very difficult. Synthesis based on
Fourier spectra, with no account of phase, does not produce realistic sounds
part because the onset properties of the sound are not captured (Clark et al.
1963). Although most musical instruments produce spectra that are nearly h
monic—that is, the frequencies of their components (measured in small time
windows) are accurately modeled by integer multiples of a fundamental—de
tions from strict harmonicity are critical to the sounds produced by some inst
ments. For example, components of piano tones below middle-C (261 Hz) m
be inharmonic to sound piano-like (Fletcher et al., 1962). In fact, all freely vib
ing strings (e.g., plucked, struck, or released from bowing) and bells produce
inharmonic spectra, and inharmonicity is important to the attack of many ins
ment sounds (Freedman, 1967; Grey & Moorer, 1977). Without erratic freque
behavior during a note’s attack, synthesized pianos sound as if they have ha
mers made of putty (Moorer & Grey, 1977).

So Helmholtz’s theory is correct as far as it goes: the relative phases of the c
ponents of a purely periodic sound matter little to perception. However, as so
as musical tone varies over time—for example, by turning on or off—tempor
properties become relevant. In the real world, there are no purely periodic 
sounds, and an instrument’s magnitude spectrum is but one of its facets.

A further amendment to Helmholtz’s theory is that not all frequency compone
of complex sounds are created equal. The mammalian ear is constructed in s
44 Musical instrument sound: acoustics and perception
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way that, for quasi-periodic sounds, only the components with the lowest fre
quencies—up to about 6 or 7 times the fundamental frequency—are represe
separately by the auditory periphery (Plomp, 1976). Components with higher
quencies are represented in tandem with neighboring components. It has be
demonstrated that these high-frequency components are perceived as group
with group rather than individual properties (Charbonneau, 1981). In addition
some aspects of the magnitude spectrum of a quasi-periodic sound may be 
salient than are others. The spectral centroid, for example, appears to be mo
salient than the high-frequency roll-off rate and the overall smoothness of th
spectral shape, at least by dint of the number of studies that have revealed it
important. And the non-periodic, noisy, portions of the sound may also be pe
ceptually salient, though they have not been studied in nearly as much depth
(however, see Serra (1989) for an influential attempt to model them for synth
purposes). 

3.2.3 The dimensions of sound

A great deal of research effort has been devoted to revealing the underlying 
ceptual dimensions of sound. The primary dimensions—pitch, loudness, and
duration—are relatively obvious, but their perceptual complexity is not. Addi-
tional dimensions are less obvious, and the tacit assumption that it even ma
sense to talk about perceptual “dimensions,” as if they could be varied indep
dently, is questionable if not outright incorrect.

Pitch is an essential property of many kinds of musical sound and a salient p
ceptual attribute of many non-musical sounds, including talking human voice
and animal vocalizations. It is defined by the American National Standards I
tute (ANSI, 1973, as cited by Houtsma, 1997, p. 105) as “that attribute of au
tory sensation in terms of which sounds may be ordered on a scale extendin
from high to low”. The pitch of a sound can be defined operationally as the fr
quency of the sinusoid that it “best matches.” As a scale, pitch is monotonica
related to scale of sinusoid frequencies. This aspect of pitch is related to theperi-
odicity of the sound waveform, and in this limited sense, the pitch frequency is 
just the inverse of the waveform’s repetition period.

Pitch is not, however, a unidimensional scale (Shepard, 1982). There are at 
three pitch attributes that complicate a simple definition by periodicity. First, no
all pitches with the same fundamental period are equivalent; sounds may diff
degree of “pitchiness,” from harmonic complexes that evoke a strong, rather
unambiguous pitch sensation to bands of noise whose pitch strength varies 
inversely with bandwidth. A second kind of variation, termed pitch height, sharp-
ness, or as I will refer to it, brightness, is related to the spectral content—a peri
odic sound becomes brighter as its high-frequency partials become stronger 
relative to its low-frequency partials—rather than the fundamental period. A th
aspect, pitch chroma, complicates matters further. Traditional Western music 
divides the octave (a doubling in pitch period) into twelve logarithmically spac
steps, which make up the chromatic scale. Pitch periods related by a power-
two ratio have the same chroma and are functionally equivalent (the musicol
cal term is octave equivalence) in many musical settings.
Musical instrument sound: acoustics and perception 45
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Among these aspects, pitch period and chroma are most important for music
oretical purposes such as defining melodic fragments. Brightness and its rela
to pitch period are crucial for sound-source identification because they enco
information about the physical sound source. The pitch period encodes the v
tion frequency of the source excitation, and brightness is affected both by the
quency content of the source excitation (its harmonic richness) and by the 
resonant properties of the vibrating body, which may enhance or weaken var
portions of the spectrum.

The pitch of real-world sounds is not static; it varies over time, either in the r
tively discrete steps between pitch chroma or continuously, with vibrato (perio
modulation) or jitter (random modulation).

Another primary perceptual dimension of sound is loudness, defined by ANSI as 
“that intensive attribute of auditory sensation in terms of which sounds may b
ordered on a scale extending from soft to loud” (quoted by Houtsma, 1997, p
105). Although loudness is not as complex as pitch, it is by no means simple
many models have been proposed for estimating the loudness of a sound ba
on its waveform. The loudness of a sound source depends on the acoustic e
it produces at the position of the listener, on the duration of the sound (for re
tively short sounds, loudness increases with duration), and on the frequency
tent of the sound’s spectrum (Moore, 1989). A simple but effective first-order
model relates loudness to the sum of the energy in the frequency regions te
critical bands (Moore, 1989).

The third primary dimension of sound, duration, has not been studied as ext
sively as pitch and loudness. Humans are better at comparing the durations 
short sounds (on the order of 0.5-10 seconds) than of longer sounds. Althou
sound duration may play a role in sound-source recognition, to my knowledg
such an influence has not been explored experimentally, except to note how m
of a signal is required for recognition of various qualities. For example, huma
require 2-3 cycles of a periodic sound to identify its octave, and several more
recognize its pitch chroma (Robinson & Patterson, 1995).

Researchers have long been interested in identifying perceptual dimensions
sound in addition to pitch, loudness, and duration. Multidimensional scaling 
(MDS) is a method for finding underlying perceptual/conceptual dimensions o
collection of stimuli, if such structure exists. MDS techniques have been exte
sively applied to the perception of isolated musical times (a partial list includ
Plomp et al., 1967; Plomp, 1970; Wedin & Goude, 1972; Grey, 1975; 1977; 
1978; Gordon & Grey, 1978; Grey & Gordon, 1978; Wessel, 1983; Krumhan
1989; Kendall & Carterette, 1991; Krumhansl & Iverson, 1992; McAdams & 
Cunible, 1992; Iverson & Krumhansl, 1993; Hajda et al., 1994; Kendall et al.
1994; McAdams et al., 1995). A recent review chapter (Hajda et al., 1997) p
vides an excellent critical overview of these and other related investigations.

A typical musical MDS study begins with a collection of 8-25 isolated tones, 
with differences of pitch, loudness, and duration minimized. Subjects are ask
46 Musical instrument sound: acoustics and perception
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to rate either the similarity or dissimilarity of each pair of tones. These judgme
are collected, and a computer program finds a low-dimensional arrangemen
the stimuli (each stimulus occupies a point in the space) that best accommo
the dissimilarity ratings (viewing dissimilarity as analogous to distance in the
space). If the set of stimuli has an underlying dimensional structure, the dim
sions of the arrangement uncovered by MDS can often be interpreted in term
acoustic/perceptual/conceptual attributes or categories.

Hajda et al. (1997) interpret the results of the various musical MDS studies a
highly inconsistent. The “space” recovered by the MDS algorithms depends 
strongly on the particular set of stimuli used, which implies that the subjects’
teria for similarity are context-dependent. Only the average spectral centroid
which correlates strongly with subjects’ ratings of brightness, is consistently 
found to be a principal dimension. Other dimensions have been interpreted a
related to the attack rise-time, spectral irregularity, and instrument family.

Even if studies of the similarity of pairs of tones led to a consistent set of dim
sions that could be interpreted in terms of simple acoustic/perceptual proper
the “space” implied by such dimensions would be of questionable relevance
sound-source recognition. The assumption that sounds occupy positions in a
ceptual space with a uniform distance metric has not been justified, and the 
pretations of MDS results often beg the question.

Rather than seek a set of dimensions to describe sounds, my approach is to
set of perceptually relevant acoustic attributes that yield information about so
identity. In particular, these attributes are indicative of the production invarian
of the source, and it is these invariants that underly sound-source recognitio
Such attributes may be continuous- or discrete-valued, and there is no reaso
expect that any two attributes will be independent, statistically or otherwise.

As mentioned above, brightness—as estimated by the spectral centroid—is 
sistently found to be a salient sound attribute, one that strongly mediates the
ceived similarity between pairs of sounds. Beauchamp found that many mus
instruments exhibit a nearly monotonic relationship between intensity (indica
loudness) and spectral centroid (Beauchamp, 1982; Beauchamp, 1993). In m
cases, louder sounds have a higher concentration of high-frequency energy
are thereby brighter. Beauchamp suggests that matching the intensity and sp
centroid of a synthesized sound—as a function of time—to a recorded origin
sound, goes a long way toward creating a convincing resynthesis (i.e., one that is
judged by listeners to be similar to the original).

3.2.4 Resonances

In Section 2.3, I stated that the geometry and material properties of a source
vibrating body impose constraints on the acoustic waveform produced by the
source. The vibrating body can be viewed as a resonator coupled to the source’s 
means of excitation. In this section, a simple physical resonator will be cons
ered, and some of its properties will be developed (the discussion is adapted
the presentation of Fletcher and Rossing (1998)). The intuitions gained by th
Musical instrument sound: acoustics and perception 47
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exercise are necessary to appreciate the discussion of the (often more comp
resonant properties of orchestral instruments presented in the next section.

Consider a mass, M, connected by an ideal spring and damper to a fixed surfa
as shown in Figure 5. The forces acting on the mass, arising from the restor
force of the spring (F = -Kx, where K is the spring constant and x is the mass’s 
position), from the damper (F = -Rv, where R is the damping constant and v is the 
mass’s velocity), and from an external force f(t), impose an acceleration on the 
mass (from Newton’s second law of motion, F = Ma, where F is the force and a 
is the mass’s acceleration). In combination they yield the equation

.  (1)

 Substituting

 (2)

we have

.  (3)

If there is no external force (i.e., f(t) = 0), the equation has solutions of the form

 (4)

where

 (5)

is the natural, or free-vibration, frequency of the system.
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FIGURE 5. A simple physical resonator, consisting of a mass M attached to a fixed surface by 
a spring (spring constant K) and a damper (damping coefficient R). An external 
force, f(t), acts on the mass, whose position is notated x(t). The resonator’s 
properties are discussed in the text.

When an external driving force of frequency ω is applied, the steady-state 
response of the system (which is linear) will be at the same frequency, so we
replace x(t) in Equation 3 with Aexp(jωt). Taking the appropriate derivatives and
rearranging slightly, we have

.  (6)

This equation has a solution given by

.  (7)

Thus, the amplitude of vibration depends of the driving frequency (ω), the natural 
frequency of the undamped system (ωo) and the damping (α).

Figure 6 illustrates the frequency response of the system for various values α. 
Defining the value Q as the ratio of the system’s natural frequency to the –3 d
bandwidth of the frequency response (or, equivalently, ωo/2α), we see that as the
damping decreases, the frequency response narrows, increasing the Q of the reso-
nator.
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FIGURE 6. The effect of damping (hence, Q) on the transfer function of the resonator. As the 
damping decreases, the Q increases, and the frequency response narrows.

Damping also plays an important role in the time-evolution of the resonator’s
response to real-world external forces, which are not always easy to express
sums of infinite-extent sinusoids. The response to a transient can be characte
as a ringing at the system’s natural frequency, which decays at a rate that dep
on the Q of the resonator (in fact, Q can be equivalently defined, for the simple 
example used here, as ωoτ/2, where τ is the time required for the impulse-
response of the resonator to decay by a factor of 1/e). The response to a gated 
sinusoid (e.g., turned on at t = 0) is a combination of the transient response an
the steady-state response, which may beat against each other, causing various 
degrees of apparent complexity as the driving frequency varies. When the dr
frequency is exactly equal to the resonator’s natural frequency, the system’s
put will grow from zero, approaching the steady-state amplitude with the tim
constant τ used to define the Q of the system. Figure 7 illustrates the response 
the simple resonator to gated sinuoids of different frequencies, for different Q 
values.

The behavior of real-world resonant systems is generally more complicated 
that of the simple oscillator presented above, but the intuitions developed by
consideration are useful for understanding more complicated systems. In the
section, the effects of resonances on the sounds of orchestral instruments w
considered, on a family-by-family basis.

1/1.5 1/1.25 1/1.1  1.0 1.1 1.25 1.5

A
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FIGURE 7. The response of the simple resonator to gated sinusoids at three different 
frequencies (relative to the resonant frequency), and for three different resonator 
Q values. 

3.3 Instrument families

The non-percussive orchestral instruments are commonly divided into three fam-
ilies: the brass, the strings, and the woodwinds. Although this division is larg
due to the historical development of the instruments (e.g., flutes, now made 
metal, were originally made of wood and are still considered members of the
woodwind family), commonly confused instrument pairs (e.g., violin and viola
oboe and English horn; trombone and French horn) nearly always occur with
particular family (see Section 3.1). It is possible to use instrument geometry,
materials of construction, and playing method to construct a single taxonom
musical instruments (a good example is given by von Hornbostel & Sachs, 19
and commonly-confused instruments will usually occupy neighboring taxonom
positions. In this section, the traditional families will be considered in turn. 
Within each family, the acoustic and perceptual properties of the perceptual “
fusion groups” will be presented.

3.3.1 The brass instruments

Of the three broad families, the brass family has the simplest acoustic struct
The family includes the cornet, trumpet, fluegel horn, trombone, French horn
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baritone, euphonium, and tuba. Each instrument consists, in its barest essen
a long hard-walled tube (often made of brass) with a flaring bell at one end.

The player makes sound by blowing into a mouthpiece affixed in the narrow 
of the tube. The player’s tensed lips allow puffs of air into the tube, which tra
the tube’s length and partly reflect off the impedance mismatch caused by th
bell. This reflection allows standing waves to build at near-integer multiples o
frequency corresponding to the speed of sound divided by twice the tube’s len
The modes do not occur exactly at integer multiples because the bell reflects
frequencies sooner than high, making the effective length of the tube freque
dependent (Benade, 1990). The player can vary the pitch by changing his lip
sion, which changes the particular vibration mode that is excited (trumpet pla
commonly excite one of the first eight modes; French horn players can excit
modes as high as the 16th), or by changing the length of the tube (either by 
depressing valves or moving a slide) (Roederer, 1973).

The instrument provides feedback to the player in the form of the bell reflect
arriving back at the mouthpiece, but it can take several round trips for the sta
ing waves to build up (Benade, 1990; Rossing, 1990). During this time—whic
depends on the tube length, not the pitch—the instrument is not stable, and 
the high modes, many pitch periods can elapse before a stable oscillation is 
up. This effect can cause the instrument’s pitch to wander during the attack; 
pitch has been observed to scoop up from below and to oscillate around the t
value (Luce, 1963; Risset, 1966). The very best players minimize this effect 
through extremely precise control of lip tension. Instability at onset may also
the cause of “blips”—a term used by Luce (1963) to describe small, inharmo
bursts of energy—preceding the tonal part of a note. Luce observed blips in t
produced by all of the brass instruments, most commonly at their lowest pitc

The internal spectrum of a brass instrument varies with the air pressure at th
player’s lips. At very low amplitudes, the pressure wave is nearly sinusoidal,
at increasing amplitudes, it becomes more pulse-like. Figure 8 shows, in sch
matic form, how the spectrum broadens with increasing pressure. The stand
wave modes are indicated by filled circles, and they are connected by lines f
clarity. In the steady-state, the puffs of air are injected periodically, so the inte
spectrum is harmonic even though the resonance modes of the tube are not
52 Instrument families
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FIGURE 8. The internal spectrum of a brass instrument, for a range of air-pressure levels, 
after Benade (1990).

The bell reflects low-frequency energy more effectively than high, and this h
three important effects. During the onset of a note, the low-frequency modes
build up more rapidly than the high-frequency modes. This explains Luce’s 
(1963) observation that the onsets of the partials are skewed, with low frequ
partials building up energy quickly, in close synchrony, and high-frequency p
tials entering later. The second effect of the bell reflection is that the instrume
external spectrum—what is actually heard by a listener—is a high-pass vers
of the internal spectrum. The transformation function is sketched in Figure 9,
the resulting external spectrum is shown in Figure 10 (again, with the harmo
modes indicated by filled circles). The final effect is that, because the bell’s r
ation pattern is more directional at high frequencies, the actual projected spe
trum varies with the angle between the bell’s axis and the listener’s position. 
general result, however, is a single broad resonance, whose center frequenc
more-or-less fixed by the bell’s lowpass cutoff frequency.

As described above, the instruments of the brass family have much in comm
The differences are primarily of scale: the large instruments have lower cuto
frequencies and pitch ranges. Measured values for the center-frequency, low
high-frequency rolloff slopes (from Strong & Clark, 1967), and approximate 
onset times (from Luce, 1963), for four particular brass instruments are show
Table 1. These values may vary from instrument to instrument and from playe
player, but are representative according the authors.
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FIGURE 9. Schematic of the bell transformation function for a trumpet, after Benade (1990).

FIGURE 10. The external spectrum of a brass instrument, for a range of air-pressure levels, 
after Benade (1990).
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A final complication in the analysis of brass instruments is that some are com
monly played with devices called mutes inserted into the bell. Several varieties o
mutes are used with the cornet, trumpet, fluegel horn, and trombone. Each i
duces a set of acoustic resonances and anti-resonances, generally above 1 
which give the instrument’s tone unique qualities (Fletcher & Rossing, 1998)
addition, French horn players often insert a hand into the bell to mute high-fr
quency components (Rossing, 1990).

3.3.2 The string instruments

The common bowed-string instruments, in order of increasing size, are the vi
viola, cello, and double bass. Each string instrument consists of an ornate 
wooden body with an extended neck. The strings (usually numbering four) a
stretched along the neck, over a fingerboard, attached at one end to the bod
way of the bridge), and at the other to tuning pegs (which control the string te
sion). When the strings vibrate, coupling through the bridge causes the body
and the air mass contained within—to vibrate, which in turn projects sound i
the air. The performer sets a string in motion by plucking it or by dragging a b
(usually consisting of stretched horse hair on a wooden frame) across it.

When bowed, the string “sticks” to the bow for brief periods, moving in syn-
chrony with the bow’s motion and then suddenly snapping back. This causes
string’s motion to resemble a sawtooth pattern (Benade, 1990; Mathews et a
1966). In the steady-state, the waveform is approximately periodic (the perio
depends on the length between the bridge and the player’s finger on the fing
board, along with the tension and mass of the string) and thus has a harmon
spectrum. The exact shape of the waveform—hence the frequency content o
spectrum—depends on the pressure of the bow against the string and on th
bow’s position relative to the bridge (bowing nearer the bridge or with increa
pressure increases the proportion of high frequencies in the spectrum, makin
sound brighter). To a first approximation, the strength of the nth partial relative to 
the first is 1/n (Benade, 1990; Rossing, 1990). There may, however, be partia
with near-zero strength if the bow position mutes them.

Instrument
cutoff

frequency
(Hz)

low-frequency 
rolloff

(dB/octave)

high-frequency 
rolloff

(dB/octave)

Amplitude 
onset
(ms)

Waveform 
onset
(ms)

Trumpet 1150 6 10-20 100 25

French horn 500 10 20 40 30

Trombone 475 5 8-18 50 35

Tuba 275 ? 10-20 75 90

TABLE 1. Characteristics of several brass instruments. Spectral data are from Strong & 
Clark (1967); onset data are from Luce (1963).
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It is, however, somewhat misleading to speak of a steady-state for a bowed s
The complexity of the interaction between the bow and string causes the len
of each “sawtooth” to vary from cycle to cycle, creating a great deal of freque
jitter (Benade, 1990), which is coherent among the various partials (Brown, 
1996). The attack and release of a bowed tone are particularly complex. The
may scrape the string during the attack, creating substantial noise, and the s
trum is generally not quite harmonic (Beauchamp, 1974; Luce, 1963). For ex
ple, the low partials start very sharp when the string is excited vigorously 
(Benade, 1990).

The spectrum of a plucked string is never harmonic. Because of dispersion i
string (that is, waves of different frequencies travel at different speeds along
string), the high-frequency partials are somewhat sharp relative to the low-fre
quency partials (Fletcher, 1964; Roederer, 1973). As in the case of bowing, 
spectrum of the plucked string depends on the plucking position (Roederer, 
1973); the spectrum will be brighter for positions nearer the bridge, and som
partials may be muted, having near-zero strengths.

The bridge is the main connection between the vibrating string (which does 
move enough air by itself to be audible in the context of an orchestra) and th
instrument’s body (which does). The bridge introduces broad resonances to
instrument’s spectrum; for the violin these occur near 3 kHz and 6 kHz (Ross
1990). Players sometimes attach a mute to the bridge, which increases the 
bridge’s effective mass and lowers the resonance frequencies, creating a so
what darker tone.

A string instrument’s body—with its ornate geometry—has many different 
modes of vibration, both of the air inside and of the body’s wood plates. The
vibration modes introduce a large number of narrow (high Q) resonances, at dif-
ferent frequencies, between the vibration spectrum of the strings and that of
air around the instrument. The low-frequency resonances (e.g., the first “air” 
“wood” resonances) are tuned carefully in high-quality instruments, but detail
the high-frequency resonances vary tremendously from instrument to instrum
(and even change over time as the instrument is played and the wood ages 
strained (Hutchins, 1998)). Analysis-by-synthesis research (e.g., Mathews e
1966; Risset & Wessel, 1982) has demonstrated that convincing bowed-strin
sounds can be synthesized by passing a 1/n spectrum (with some zeroed partials
through a filter with a large number of narrow resonances in roughly the corr
frequency regions, without paying attention to the details of resonance place
ment.

To a first approximation, the complex resonance structure of a string-instrume
body causes the spectrum of any particular note to be less regular than the s
1/n rolloff of the bowed string. With frequency jitter, or the commonly used fre
quency modulation called vibrato (in which the player modulates the effective 
string length—hence the pitch—by rocking a finger back and forth on the fing
board), the position of each harmonic partial in relationship to the body reso
nances changes over time. This interaction creates complex patterns of amp
56 Instrument families
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modulation (Risset & Wessel, 1982). The amplitude modulation of each part
varies at the same rate as the frequency modulation, but can be in different d
tions for different partials, depending on their particular relationships to near
resonances (Fletcher & Sanders, 1967) and different depths (as much as 15
according to Fletcher & Rossing, 1998).

The body resonances also affect the attack and release of each note. The ra
energy buildup or decay of a particular partial is related to the effective Q of 
nearby resonances, and this causes the attack and release rates of the diffe
partials to vary with partial number and pitch (Beauchamp, 1974). The attack
rates of isolated string tones are generally much slower than those of the oth
orchestral instruments. Indeed, it can take a large fraction of a second for a s
tone to reach “steady state;” in contrast, brass tones generally reach steady
in less than 100 ms. The overall attack time appears to vary greatly from ins
ment to instrument, possibly from player to player, and perhaps even from no
note. Some representative values, measured by Luce (1963), are shown in T
2.

The violin is, perhaps, the “king” of the orchestra; it is the most-engineered, 
most-studied, and most-uniformly-constructed member of the string family. T
open strings of a violin are typically tuned in fifths, to the pitches G3, D4, A4,
and E5 (196 Hz, 290 Hz, 440 Hz, and 660 Hz), and the first air and wood res
nances of a high-quality violin’s body are tuned to correspond to the pitches 
the open middle strings (approximately 290 Hz and 440 Hz respectively) 
(Benade, 1990). As stated above, the upper body resonances vary greatly fr
instrument to instrument, but there is usually a broad maximum near 3 kHz th
due to the bridge resonance. Figure 11 depicts the resonance modes of the v

The viola is somewhat larger than the violin, but the change in body size is n
scale with the change in pitch range; the open strings of a viola are tuned a 
cal fifth below those of a violin (C3, G3, D4, A4, or 130 Hz, 196 Hz, 290 Hz, a
440 Hz), but the first air and wood resonances are relatively more flat (230 H
and 350 Hz, or D-flat-3 and F4), falling slightly above the frequencies of the l
est two strings (Benade, 1990). Violas are not made as uniformly as violins, 
the string-to-resonance relationships vary more (Benade, 1990). The viola’s
cipal bridge resonance is close to 2 kHz, causing the upper body resonance
form a maximum there.

Instrument Time required to reach 
steady state (ms)

Time required to reach 
full amplitude (ms)

Violin 100 200

Viola 40 100

Cello 120 350

Double bass 80 100

TABLE 2. Attack times for the bowed string instruments, as measured by Luce (1963).
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FIGURE 11. The resonance modes of a violin, after Benade (1990). The first air and wood 
modes (indicated by A and W) are typically tuned to particular frequencies. The 
upper modes are much more complex and vary greately from instrument to 
instrument (hence are indicated by a dashed line showing the general trend). The 
broad maximum near 3 kHz is due to the bridge resonance.

The dimensions of the cello are about twice those of the viola. Its strings are
tuned one octave below the viola, to C2, G2, D3, and A3 (65 Hz, 98 Hz, 145
and 220 Hz), and its first air and wood resonances are typically near 125 Hz
175 Hz respectively. Benade reports that the cello often exhibits a deep notc
its resonance structure near 1500 Hz. 

The dimensions of the double bass are about twice those of the cello. The st
are tuned in fourths, to E1, A1, D2, and G2 (41 Hz, 55 Hz, 73 Hz, and 98 Hz
and some instruments have a fifth string. The first air and wood resonances o
bass occur at approximately 60 Hz and 98 Hz respectively, and the bridge re
nance frequency is approximately 400 Hz. 

The string instruments form a very tight perceptual family. Several of the exp
ments reviewed in Section 3.1 demonstrated listeners’ inability to reliably dis
guish the four instruments by sound alone; each is commonly confused with
neighbors in scale. The violin and viola, because they are closest in pitch an
scale, are the most difficult to distinguish. The limited available evidence sug
gests that listeners are very good at determining whether or not an instrumen
member of the string family, but that once that determination is made, they u
relatively unreliable criteria such as pitch range or overall brightness to, in eff
guess the particular instrument. Experienced musicians make use of highly 
nitive cues—such as recognizing particular pieces or playing techniques—to
make much better decisions when given access to an entire phrase.

3.3.3 The woodwind instruments

The woodwind family is much less homogenous than the brass or strings. It 
made up of several distinct subgroups, both acoustically and perceptually: th
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double-reeds, the single-reed clarinets, the flutes (or “air” reeds), and the rem
ing single-reeds, the saxophones.

Although the various sub-families have distinct properties, each woodwind 
instrument has several properties common to the family as a whole. Woodwi
produce sound by creating standing waves in a tube, whose effective length 
altered by selectively opening or closing tone-holes. As with the brass instru
ments, the player can overblow to change the pitch, by selecting a set of vibratio
modes with higher frequencies (Roederer, 1973); in contrast to the brass ins
ments, woodwinds often have register keys, which when depressed open small 
tone-holes that diminish the strength of the tube’s lowest vibration mode, ea
register-to-register transitions (Fletcher & Rossing, 1998). The open tone-ho
of a woodwind instrument impose a low-pass characteristic on the instrumen
spectrum, and the cutoff frequency—which varies surprisingly little across th
pitch range of the instrument—is essential to the tone of the particular instrum
(it alone can determine whether an instrument is suitable for a soloist or for a
ensemble performer). As Benade (1990) writes:

“[S]pecifying the cutoff frequency for a woodwind instrument is tantamount to 
describing almost the whole of its musical personality.”

Finally, the woodwinds—with the exception of the flutes—tend to have the m
rapid attack transients of the three major families. In the rest of this section, 
perceptual/acoustic subdivisions of the woodwind family will be considered i
turn.

The double-reed subfamily consists of, in order of increasing size, the oboe,
English horn, bassoon, and contrabassoon. Each instrument’s body consists
conical tube, and the performer creates sound by forcing air through a sand
of two reeds, which is attached to the tube at one end. The conical tube sup
vibration modes at integer multiples of the frequency corresponding to the tu
effective length, which is altered by opening or closing tone holes. The doub
reeds are commonly played with vibrato.

The oboe typically has two resonances—a strong one near 1 kHz and a wea
more variable one near 3 kHz (Rossing, 1990; Strong, 1963)—separated by
anti-resonance near 2 kHz (Strong, 1963). Luce (1963) measured one oboe
ing that it takes very little time for the attack transient waveform to stabilize in
shape (15 ms) and amplitude (20 ms), and noting that the fundamental (the 
partial) appears first.

The English horn is, to a first approximation, a larger oboe, but its properties
not as consistent as those of its smaller sibling (Luce, 1963). It typically has 
prominent resonance near 600 Hz and a weaker resonance near 1900 Hz (S
1963), separated by an anti-resonance between 1300 Hz (Strong, 1963) and
Hz (Luce, 1963). Above the resonances, the instrument’s spectrum rolls off 
abruptly, at approximately 20 dB per octave (Strong, 1963). Luce’s (1963) m
surements suggest that the instrument’s waveform stabilizes in 30 ms and re
a stable amplitude in 50 ms during the attack.
Instrument families 59
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The bassoon is much larger than the oboe and English horn. It has a tone-h
cutoff frequency near 375 Hz (Benade, 1990) and a prominent resonance 
between 440-494 Hz (Rossing, 1990). The bassoon’s spectrum rolls off rapi
above the primary resonances, and there may be a minor anti-resonance ne
Hz (Luce, 1963). Luce’s attack measurements suggest waveshape and amp
stabilization times of 30 ms and 40 ms respectively. As a final note, the bass
is unique among the members of the orchestra in that the first partial of its to
(the fundamental frequency) is very weak—perhaps because its tube is so lo
that it must be folded to be playable. The contrabassoon is—to a first approx
tion—similar to a bassoon whose dimensions are doubled.

The clarinets are a singular sub-class of the orchestral instruments. A clarine
a single-reed mouthpiece attached to a cylindrical tube that, to a first approx
tion, supports vibration modes only at odd multiples of the fundamental corre-
sponding to twice the tube’s length. There are several different sized members
the clarinet group; the B-flat and A (tenor) clarinets and the bass clarinet are 
commonly used in the orchestra.

The B-flat and A clarinets are nearly identical. Players alternate between the
for ease of playing particular musical keys rather than for reasons of tone qu
The clarinet’s spectrum is limited by the tone-hole cutoff, which varies from 
1200-1600 Hz depending on the instrument (Benade, 1990) and the 5 kHz li
tion of reed vibration (Luce, 1963). Two registers separated by a musical twe
(again because of the cylindrical tube closed at one end—the first two registe
other woodwinds are separated by an octave) cover most of the clarinet’s ra
The relative strengths of the odd and even partials depend on their frequenc
and the playing register. They are shown in schematic in Figure 12. Above th
cutoff frequency (approximately 3 kHz for a B-flat clarinet), the odd and even
partials are of similar strength; below the cutoff, the odd-numbered partials a
stronger (the difference is exaggerated in the upper register). Luce observed
waveform and amplitude attack times of 40 ms and 60 ms, and noted that th
damental partial appears first; the upper partials are delayed by 5-10 cycles 
then rise very rapidly (Luce, 1963).
60 Instrument families
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FIGURE 12. Schematic of the clarinet’s spectrum, after Strong (1963). Above the cutoff 
frequency, the odd and even partials behave similarly. Below the cutoff, the even-
numbered partials are suppressed relative to the odd-numbered partials. The 
effect depends on the instrument’s playing register.

The flute family, or “air reeds,” consist of (in order of increasing size) the pic
colo, flute, alto flute, and bass flute. Of these, only the piccolo and flute are c
monly used in orchestras. The flute player excites the instrument’s tube by 
projecting a flow of air across a metal edge at one end. The resulting turbule
noisy signal excites the tube at dips in its acoustic impedance (Benade, 199
The common flute has an overall resonant maximum near 600 Hz, with a hig
frequency rolloff from 10-30 dB per octave (Strong, 1963). It has a very slow
smooth attack (Luce observed rise times in the neighborhood of 160 ms), co
monly followed by strong periodic amplitude modulation—called tremolo—at 
frequencies like those used in double-reed or string vibrato. At pitches above
Hz, the flute’s spectrum is dominated by the fundamental frequency, and abo
880 Hz, the waveform is nearly sinusoidal (Luce, 1963).

The piccolo is essentially a very small flute, and it shares many of the flute’s
properties. Luce measured waveform and amplitude attack times of 25 ms a
100 ms respectively, but observed that the attack gets much longer at high pi
(Luce, 1963). At pitches above 1 kHz, the piccolo’s waveform is nearly sinus
dal.

The last sub-class of woodwind instruments is the saxophones, which are us
only in modern orchestral music and have been studied in less depth than th
other orchestral instruments. There are several different sized saxophones, 
including the soprano, alto, tenor, and baritone. The saxophone is a single-r
instrument with a conical bore. Rossing (1990) notes that the saxophone sp
trum has few high harmonics, and Freedman (1967) observed that inharmon
is important for the bite of its attack, but further details are hard to come by.
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3.4 Summary

This chapter examined musical instrument recognition from two perspectives
First, human instrument-recognition abilities were considered and quantified
the common orchestral instruments. Second, the sounds produced by the in
ments of the orchestra were examined in order to discover the features upon
which the human recognition process might operate. This section summarize
relevant findings within a unified framework.

There is a common belief that people can become very good at identifying m
cal instruments from sound alone, but this conventional wisdom is flawed. Th
evidence presented in Section 3.1 suggests that people can become very go
recognizing classes of instruments with similar excitation and resonance prope
ties. These classes correspond closely to the traditional instrument families, 
the exception of the woodwind family, which comprises several distinct sub-
groups. Distinctions between members of the same class—e.g., violin and v
oboe and English horn, or trombone and French horn—are made much less
ably. 

Based on this evidence, it is plausible that the process of musical instrumen
ognition in humans is taxonomic—that classification occurs first at a level co
sponding to instrument sub-families (perhaps: strings, brass, double-reeds, 
clarinets, flutes, and saxophones) and progresses to the level of particular in
ment classes (e.g., trombone, violin, etc.). Although I have not presented ob
tive proof of this structure, it is highly consistent with the structure of human 
perception in other domains, as demonstrated by Rosch and her colleagues
(Rosch, 1978; Rosch et al., 1976) and summarized in Section 2.3. In the nex
chapters, a system based on this taxonomic structure will be described, and
performance will be demonstrated to be similar in many aspects to that of 
humans.

One of the core theses of this dissertation is that many sound sources—and
particular, the orchestral instruments—are identified through recognition of th
resonant properties. The construction of musical instruments and the physic
sound production place strong constraints on musical sounds—constraints t
measurably and perceptually affect the acoustic signal. This viewpoint illumi
nates many of the experimental results. For example, in an isolated-tone con
the attack transient may be a more salient cue for identification than the stea
state spectrum precisely because the rise-times of the various partials reveal
about the resonance structure (in particular, the effective Q of resonances in dif-
ferent frequency regions) than do their asymptotic values. If, however, the ste
state portion is performed with vibrato, the amplitude modulations of the part
(induced by the frequency modulation as they interact with the resonances o
vibrating body) reveal the resonant structure, and human recognition perfor-
mance improves.

There are many properties of the waveforms produced by musical instrumen
that reveal information about the excitation and resonance structure of the in
62 Summary
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ments. As suggested above, different properties are salient in different conte
To date, machine systems have not taken advantage of this; as described in
tion 2.4, nearly all “instrument recognition” systems have operated on isolate
tones (and, crucially, have not demonstrated any kind of performer-independ
generalization). The most intriguing systems are those that operate on musi
phrases rather than isolated tones. Such systems have had good success a
guishing among a small number of instrument categories by using cepstral c
cients calculated on small time windows. The cepstral data are used in such a
that they capture information about the short-term spectral shape of the sou
wave, while discarding information about its variation over time. Many of the
cues known to be important for humans are not represented, including pitch,
vibrato, FM induced AM, and the rise times of the harmonic partials. 

The sound of a musical instrument is often thought of as multidimensional. 
Although there are several sound properties that apply to many sounds (e.g.
pitch, loudness, brightness), there is no evidence that there is a simple, mult
mensional space underlying perception or recognition. In contrast, the myria
cues used by listeners vary from source to source and are better described a
lections of features—some discrete, some continuous.

The perceptually salient features of sounds produced by orchestral instrume
include:

• Pitch: The periodicity pitch of a sound yields information about the size o
the sound source. Typically, smaller sources produce higher-pitched sou
larger sources produce lower pitches. Variations in pitch are also source
information. The degree of random variation reveals information about th
stability of the source excitation and the strength of its coupling to the re
nant body. For example, brass instruments, which have relatively weak e
tation-resonance coupling, exhibit wide pitch “wobble” at onset; similarly
the unstable interaction between bow and string causes the tones of stri
instruments to have a high degree of pitch jitter. The relationships of pitch to 
other sound properties are also important. For example, the wide pitch v
tions of vibrato cause an instrument’s harmonic partials to interact with th
resonant modes of the instrument, producing amplitude modulations, an
these provide a wealth of information about the instrument’s resonant st
ture.

• Loudness: The intensity of an instrument’s sound interacts with other sou
properties, producing salient cues. Tremolo (that is, sinusoidal variation of 
loudness) often accompanies vibrato, and the relative strengths of pitch and 
loudness variation may be salient. For example, flutes typically produce 
much stronger tremolo than strings or double-reeds.

• Attack transient : When listening to an isolated musical tone, listeners us
information contained in the attack transient to identify the tone’s source
The rise-times—both absolute and relative—of the harmonic partials rev
information about the center-frequency and Q of resonances in the sound 
source. The low-amplitude “blips” preceding the tonal portions of some 
tones—particularly those produced by brass instruments—may also con
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useful information. Finally, it is possible that the non-harmonic, noisy, po
tions of the attack contain information that may be used to aid identificati
but I am not aware of any demonstration of their use by human listeners

• Spectral envelope: Several features of the relative strengths of a musical 
tone’s harmonic partials reveal information about the identity of the tone
source. For example, the spectrum can reveal the center-frequencies of
prominent resonances and the presence of zeros in the source-excitation
relative strength of the odd and even partials can be indicative of the cyl
drical tube (closed at one end) used in clarinets, and the irregularity of th
spectrum can indicate a complex resonant structure as found in string in
ments.

• Inharmonicity : Deviations from strictly integer-related partial frequencies
are common in freely-vibrating strings, bells, and in the attacks of some 
instruments (saxophones, for instance).

The relative importance of these various features has not been studied in mu
depth, and typically, little is known about the ways in which they are extracte
and represented by the human auditory system. The next chapter describes
of signal-processing techniques and a series of representations at various lev
abstraction for many of the features described above, along with demonstra
of their extraction from recordings of orchestral instruments.
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Chapter 2 examined human sound-source recognition and compared severa
kinds of artificial recognition systems to the human system, highlighting their
many limitations. Chapter 3 examined human abilities on a particular recogni
task—identifying orchestral musical instruments from the sounds they produ
and described a set of acoustic features that could form the substrate of hum
recognition abilities in this small domain. This chapter builds on the insights 
gained from the previous two chapters. A series of signal-processing transfo
tions are described, which convert an audio recording through a series of repre-
sentations intended to highlight the salient features of orchestral instrument 
sounds.

4.1 Overview

A classic example of an artificial perceptual system is David Marr’s model of
early vision.1 He used a series of increasingly abstract representations to des
visual scenes, starting with a raw image and culminating in an object descrip
that could be matched against templates stored in memory. In his words:

“A representation is a formal system for making explicit certain entities or types 
of information, together with a specification of how the system does this. And I 

1. The analogy between Marr’s work and the system described in this dissertation is l
I subscribe to the broad aspects of his modeling philosophy, but the system descri
here is not intended to be an auditory analog of his vision system. Marr explicitly 
decries the importance of high-level knowledge in perception, and I view this as a 
cal limitation of his work.
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shall call the result of using a representation to describe a given entity a descrip-
tion of the entity in that representation….[T]here is a tradeoff; any particular 
representation makes certain information explicit at the expense of information 
that is pushed into the background and may be quite hard to recover.” (Marr, 
1982, p. 20-21)

At each successive level in Marr’s representation, the perceptually salient as
of the image are more explicitly represented. At the first level, the raw image
transformed into a so-called “primal sketch,” which makes intensity changes
(some of which correspond to edges of objects) explicit, noting their geograp
cal distribution and organization. At the second level, called the “2 ½-D sketc
the orientation and rough depth of surfaces are represented, making particular 
note of contours and discontinuities. Finally, the 2 ½-D sketch is transformed 
a 3-D model representation that describes the shapes and spatial organizati
objects in the scene from an object-centered viewpoint (because recognition
demands a representation that does not depend much on the perceiver’s vie
point). These transformations are performed as a sequence of relatively sim
stages because “it is almost certainly impossible in only one step” (Marr, 198
36). 

4.1.1 Mid-level representation

Marr’s intermediate representations are examples of what have been termedmid-
level representations in the artificial intelligence literature. Referencing Marr’s 
work, Ellis and Rosenthal (1995) provide a set of desiderata for auditory mid
level representations:

1. Sound source separation: As a signal is transformed through a set of repr
sentations, representational elements should correspond more and mor
single sound sources or events. This feature is necessary to enable reas
about individual components in an auditory scene.

2. Invertibility : The series of representational transformations should be 
invertible. Ellis and Rosenthal make too strong a demand in this case, re
ing that “the regenerated sound be perceptually equivalent to the origina
Although such a property may be desirable from a practical engineering
standpoint, it is not necessary for many applications. As long as all perce
ally equivalent sounds map into the same description in the representati
an ability to regenerate an acoustic signal is not necessary. However, it 
should be possible to use information contained in a particular representa
to reason about the contents of lower-level representations (and this req
ment, which bears little relation to resynthesis per se, may be necessary for 
disentangling mixtures of sounds).

3. Component reduction: At each successive level of representation, the nu
ber of objects in the representation should diminish and the meaningfuln
of each should grow.

4. Abstract salience of attributes: At each re-representation, the features 
made explicit should grow closer to the desired end result, which in man
cases will be the perceptually salient aspects of the signal.
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5. Physiological plausibility: Given the goal of understanding the operation o
the human auditory system, it is desirable for representational transform
tions to match those used by the brain. Of course, this is only important i
far as it serves the goals of the research, as discussed in Section 2.2.

Of these desiderata, the third and fourth are the most relevant to the current w
In addition, I would add that it is important for the representation to be robus
with respect to sound-scene complexity (e.g., noise, the presence of multiple
simultaneous sound sources, etc.). Although it is unreasonable to expect tha
descriptions of the independent sources in an auditory scene be identical to 
descriptions when heard in isolation, the system as a whole should be able t
son about noisy or obscured observations and their effect in the representat
Ellis’s prediction-driven architecture does this well for its relatively low-level 
descriptions of noise beds, transients, and quasi-periodic signals, but it is no
obvious how to identify and specify appropriate constraints for higher level 
descriptions.

Marr’s low-level representations are symbolic, beginning at the level of the p
mal sketch, and this has some desirable effects. Transformation into symbol
ease some of the difficulty associated with noisy, incomplete data (Dawant &
Jansen, 1991) and can be used to suppress unnecessary detail (Milios & Na
1992). These features can lead to more robust analysis and decreased stora
requirements, but it is important not to discard information that will be neede
resolve discrepancies arising at higher levels. 

4.1.2 Features and classification

As was pointed out in Section 2.3, recognition systems cannot operate by m
rizing every instance of every object that is to be recognized. Object identific
tion is a pattern-recognition problem, and it is worthwhile to consider some of
general properties of pattern-recognition systems. Pattern-recognition system
(see, for example, Duda et al., 1997) operate by measuring a set of features
a representation of an object and then employing a classification function (u
ally learned during a training period) to make a classification decision. The c
sification function operates in a multidimensional space formed by the featur
With an infinite number of “training” examples (i.e., for which the system is to
the correct classification of each object), the classification function improves
additional features are added to the system. In realistic contexts, however, th
number of training examples is limited, and the increased number of feature
dimensions makes it increasingly difficult to find a good classification functio
because the “classification space” grows exponentially with the number of 
dimensions. This creates a kind a paradox, where it is both better and worse
have a large number of features.

One  solution to the number-of-features paradox is to employ meta-features. By 
computing a large number of first-order features directly from the representa
and then combining them intelligently into a smaller group of second-order fe
tures, the recognition engine can employ a small number of features that con
Overview 67
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information equivalent to the larger set. If the problem is structured well, it m
be possible to construct the system so that it does not matter if a particular s
of first-order features is missing (or is too noisy) in a particular sample—and 
is an important feature because the particular set of features that is available
depend on the context. With this approach, the goal of the representational e
should be to generate a feature set that is as small as possible, yet still enab
robust recognition.

The approach taken here is to avoid using classification algorithms that emp
large number of features at once. Instead, by using multiple classifiers, each
ating on a small number of features, with some kind of voting scheme to com
their classifications, the curse of dimensionality can be alleviated. However, 
approach may not take full advantage of the statistical relationships (e.g., co
tions) between features, which given enough training data could be better 
exploited in the full-dimensional classification space.

The representational scheme used here is constructed of several different le
as depicted in Figure 13, and is structurally similar to the one proposed by 
McAdams (Figure 3 on page 27). The following briefly describes the various
components, each of which is described in more detail in the remainder of th
chapter:

• Raw signal: The acoustic pressure waveform measured by a microphone
represents the acoustic signal reaching the eardrum of the listener. For 
of analysis, it is stored in a data file.

• Front-end: The first stage of signal processing consists of a filterbank 
whose outputs are half-wave rectified, lightly smoothed, and then analyz
by short-term autocorrelation to make periodicity—the primary basis of 
pitch—explicit.

• Weft: The second stage of processing identifies stable periodicities in th
signal that are likely to correspond to musical tones. Each periodicity is r
resented as a pitch-track and a corresponding time-varying spectral env
lope.

• Note properties: A large number of features are extracted from the weft r
resentation, corresponding to the properties we know affect human perc
tion.

• Source model: The note properties are accumulated over time to form a 
model of the sound source’s excitation and resonance structure.

• Model hierarchy: The sound’s excitation/resonance model is compared t
members of a hierarchically arranged set of stored reference models. Th
sound is “recognized” as an instance of the class represented by the mo
that matches most closely. (The recognition process is described in Cha
5).
68 Overview
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FIGURE 13. The representational/signal-processing scheme used here. The front-end consists 
of a fixed signal-processing network implemented in three stages. The mid-level 
representation makes explicit the many acoustic features known to be 
perceptually salient for human listeners. Recognition is based on a compact 
excitation/resonance model that integrates the many acoustic features into a 
simplified, abstract form. The feedback loops have not yet been integrated into the 
model.

4.2 The front end

The first representational transformation is implemented by a fixed signal-pro
cessing network called the front-end. It consists of three sub-stages that culm
nate in a three-dimensional representation called the correlogram, as shown
Figure 14. The implementation described here is modeled after the one desc
by Ellis (1996); differences between the two implementations are minor and 
be described as they arise.

The sound-pressure wave itself is represented by a sequence of 16-bit fixed-
samples, recorded at 32,000 samples per second of sound (Ellis used a 22.0
sampling rate). This representation is capable of coding vibration frequencie
to 16 kHz (the Nyquist rate, or “folding” frequency), so the sound wave is filter
before sampling to remove any higher frequencies. This bandwidth is sufficie
to recreate a high-quality audio signal (better than FM radio broadcasts but n
good as compact discs). Many orchestral musical instruments produce frequ
spectra that continue beyond 16 kHz (indeed, above 80 kHz in some cases!
though the spectra of most non-percussive instruments roll off well below 16 
(Boyk, 1997). The signals sampled at 32 kHz are quite sufficient for humans
recognize the instruments, as demonstrated by the experiment described in 
ter 6.
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FIGURE 14. Detail of the front-end processing chain. Processing occurs in three discrete 
stages, modeling the frequency analysis performed by the cochlea, the nonlinear 
transduction of the inner hair cells, and a higher-level periodicity-based 
representation.

4.2.1 Bandpass filterbank

The first stage of signal processing consists of a fixed array of linear bandpa
ters that model the frequency analysis performed by the cochlea. The cochlea is a 
bony, coiled, fluid-filled structure with two small openings covered by flexible
membranes. At one end, a chain of tiny bones (the ossicles) attaches one of the 
flexible membranes (called the oval window) to the eardrum (called the tympanic 
membrane). When pressure variations (sound waves) reach the ear, they trav
down the ear canal and cause the tympanic membrane to vibrate; the vibrati
are transmitted across the ossicles to the oval window, where vibrations are 
ferred to the cochlear fluid. The cochlea’s interior is separated into two main
compartments by a set of flexible tissues that includes the basilar membrane. 
Vibrations travel the length of the basilar membrane, with high frequencies tr
eling further than low. 

Any small region of the basilar membrane can be modeled as a bandpass fil
(von Békésy, 1960), and although there are nonlinearities involved in the phy
logical chain to this point, they appear to be of secondary importance in rela
to the bandpass frequency analysis, which is preserved at higher levels of th
neural processing chain (Pickles, 1988). It is assumed that the breakup of th
acoustic signal into various frequency bands is the primary function of the 
cochlea; at the very least, it is fair to say that we do not yet understand how 
nonlinearities at the level of the cochlea help the hearing process.

The bandpass filter model I use is based on the one proposed by Patterson a
colleagues, which in turn is modeled after neurophysiological and psychoph
cal data (Patterson & Holdsworth, 1990; Patterson & Moore, 1986). The softw
implementation is modeled after Slaney’s (1993). Each bandpass filter is imp
mented by four cascaded second-order filter sections, which realize an 8th order 
filter with a “gammatone” impulse response (an example, for a filter with a 1 k
center frequency, is shown in Figure 15). The bandwidth of each filter is set 
match the equivalent rectangular bandwidth (ERB) of the cochlear tuning curve 
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at the corresponding frequency, as modeled by Moore and Glasberg (1983).
filter Qs, as a function of center frequency, are nearly constant (approximate
9.3) over much of the relevant frequency range. At low frequencies, the filters
somewhat broader (they have smaller Q values). For ease of implementation, th
center frequencies are spaced evenly on a logarithmic scale, with six filters p
octave, ranging from 31.25 Hz to nearly 16 kHz (in Ellis’s implementation, ce
ter frequencies covered a smaller range, from 100 Hz to just over 10 kHz). T
provides a significant overlap between adjacent filters (particularly at the low
center frequencies), as shown in Figure 16. 

Figures 17 and 18 depict the impulse responses themselves, illustrating their
ilarity on a logarithmic time scale. This similarity, which implies that the impul
responses are approximately time-scaled versions of a single function (in thi
case, the gammatone), is characteristic of wavelet transformations. The time-
scale approximation is most accurate in the upper octaves. As is evident from
Figure 17 the “center of mass” of the impulse responses varies with center f
quency over a range of approximately 20 ms. This variation, called group delay, 
is compensated in the current implementation by the introduction of a pure d
element at the output of each filter. This compensation has no physiological 
even computational) justification, and it has no effect on recognition perfor-
mance; it merely makes the representations at this and higher levels easier 
“read” by a human observer.

To better illustrate the effect of this first representational transformation, cons
a simple sawtooth waveform, beginning at (t = 10 ms) and repeating at 125 
cycles/second (see top panel of Figure 19). An infinitely repeating sawtooth w
has a discrete Fourier spectrum with each component proportional to the inv
of its component number. When played through a loudspeaker, the waveform
generates a buzzing sound with a pitch corresponding to the fundamental fre
quency of 125 Hz.

Figure 19 illustrates the response of the cochlear filter bank to the sawtooth 
waveform without group-delay compensation; Figure 20 shows the same 
response with compensation. In the main panels, the output of every second fi
channel is depicted as a function of time and amplitude. The left panels illust
the root-mean-squared (RMS) energy in each channel, as a function of cente
quency, in alignment with the waveforms in the main panel. The upper pane
display the waveform to illustrate the mis-alignment of the amplitude-modulat
peaks across frequency (highlighted by an overlaid dotted line showing the v
tion of group-delay as a function of center frequency). 
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FIGURE 15. Impulse response of the cochlear bandpass filter centered at 1 kHz.

FIGURE 16. Overall frequency response of the cochlear filterbank, plotted on a logarithmic 
frequency scale (every second filter is shown).
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FIGURE 17. Impulse responses of nine cochlea bandpass filters (one filter is shown per 
octave). Their amplitudes have been normalized to a uniform scale for display 
purposes. 

FIGURE 18. Impulse responses of nine cochlea bandpass filters (one filter is shown per 
octave) on a logarithmic scale. Their amplitudes have been normalized to a 
uniform scale for display purposes. Note the similarity of structure that is 
characteristic of a wavelet filterbank. 
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FIGURE 19. Response of the cochlear filter bank without group-delay compensation. The 
output of every second filter channel is shown. The left panel shows the RMS 
amplitude of the filters as a function of center frequency. The top panel shows the 
sawtooth waveform to illustrate the alignment of the amplitude-modulation peaks.
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FIGURE 20. Response of the cochlear filter bank with group-delay compensation. The output 
of every second filter channel is shown. The left panel shows the RMS amplitude 
of the filters as a function of center frequency. The top panel shows the sawtooth 
waveform to illustrate the alignment of the amplitude-modulation peaks. Note the 
improved vertical alignment in comparison with Figure 19.
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4.2.2 Inner hair cell transduction

The basilar membrane contains the inner hair cells, which act as transducers, 
converting the motion of the membrane in the cochlear fluid into electrical 
impulses. The inner hair cells have tiny embedded hairs (cilia) that bend when 
the basilar membrane moves relative to the cochlear fluid, and the cells emit
trical spikes with a probability that depends on the degree of deflection. 

There are two properties of the inner hair cells that have particularly importa
effects on the signals transmitted to higher levels. First, the cells respond on
cilia deflection in one direction, and this introduces a half-wave rectification 
stage to the signal-processing chain. Second, at low frequencies, the hair ce
tend to fire at a particular phase of the signal—a process called phase locking. As 
the frequency of the input signal increases, phase locking begins to run out 
about 1.5 kHz and disappears by 5 kHz, but in the absence of locking to thefine 
structure of the waveform, the hair cells lock to the signal’s amplitude envelop
This effect is simulated in the current implementation by a light smoothing op
ation (convolution with a 0.25 ms raised-cosine function1), which has little effect 
at low frequencies, but, in combination with the half-wave rectification, produc
a reasonable envelope function at high frequencies. 

Figure 21 shows the response of several cochlear filter channels after half-w
rectification and light smoothing. Several much more complex models of inne
hair cell function have been developed (for example, several are compared i
Hewitt & Meddis, 1991) that are more faithful to the nonlinear properties of 
mammalian inner hair cells, but the simple model described here was chose
two reasons. First, as with the cochlear filters, we do not know what benefit a
tional nonlinearities bring to the hearing process. Second, the current implem
tation has the desirable property of preserving the relative energy levels in th
various cochlear filters. Because the energy levels in the cochlear channels 
their variation over time) greatly affect human perception, it is desirable for 
intensity to be easily recoverable from the representation.

4.2.3 Pitch analysis

Pitch is one of the most important attributes of orchestral instrument sounds,
its relations to other acoustic properties form much of the basis of human so
source recognition. In addition, pitch is thought to be one of the primary cues
auditory scene analysis. It is therefore desirable for pitch to be explicitly repr
sented in any computational auditory scene analysis or sound-source recogn
system. The third stage of the front end does exactly that.

1.  Ellis used a 1.0 ms window, but I found that it removed too much fine structure in th
5 kHz region. The rather shorter window used here (0.25 ms) may instead be too short.
76 The front end
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FIGURE 21. Responses of nine cochlea bandpass filters (one filter is shown per octave) to the 
125 Hz sawtooth signal after half-wave rectification and light smoothing intended 
to model inner hair cell transduction. The output amplitudes have been normalized 
to a uniform scale for display purposes.

An approximately periodic signal will, in each cochlear filter output, produce 
approximately periodic signal—with the same period as the full-bandwidth si
nal. This across-channel similarity of periodicity is the usual basis of human 
pitch perception. Autocorrelation is one of the conceptually simplest signal-p
cessing techniques for discovering such periodicity in a signal. By multiplying
the signal with delayed (time-shifted) versions of itself and measuring the av
age energy as a function of delay lag, it is possible to identify the underlying
period of the signal. J. C. R. Licklider (1951) proposed such a mechanism, o
ating in parallel on the outputs of cochlear filters, as a possible basis for hum
pitch perception. Equation 8 is the usual definition of autocorrelation, with th
integration ranging over the entire signal.

 (8)

In practice, it is impossible—and undesirable—to integrate over the whole si
nal. Pitch can vary over time, so the autocorrelation should be a running, or 
short-time operation applied to the signal. The representation that results will
have three dimensions: cochlear position (corresponding to frequency), auto
relation lag (corresponding to pitch period), and time, as shown in Figure 22
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A short-time operation implies some sort of averaging window, which can be
applied in one of two ways. The usual approach is to apply the window first, 
before autocorrelation, as shown in Equations 9 and 10. Defining a window f
tion w(t), we have

 (9)

 (10)

These calculations can be implemented efficiently, using FFT operations to p
form the autocorrelation in the frequency domain. Such an approach was 
described by Slaney and his colleagues (Duda et al., 1990; Slaney & Lyon, 1
Slaney & Lyon, 1993) with reference to Licklider’s original proposal. Meddis 
and Hewitt (1991a; 1991b) used a correlogram of this sort to model human p
perception. They formed a summary autocorrelation by summing the contribu-
tions of each cochlear channel at each autocorrelation lag and identified the
est peak, which corresponds to the pitch period. With this model, they 
successfully demonstrated correlates of “the missing fundamental, ambiguo
pitch, the pitch of interrupted noise, the existence region, and the dominance
region for pitch” (Meddis & Hewitt, 1991a). A similar approach has been appl
to the outputs of actual inner hair cells in a cat, using pooled inter-spike-inte
histograms—which are very similar to autocorrelations—with similar results 
(Cariani & Delgutte, 1996a; 1996b). This style of correlogram processing wa
also used in two of the first computational auditory scene analysis systems 
(Brown, 1992; Mellinger, 1991).

FIGURE 22. Illustration of the correlogram volume, after Ellis (1996).

xw t t0,( ) x t( )w t t0–( )=

Rxwxw
τ t0,( ) xw t t0,( )xw t τ t0,–( ) td

∞–

∞

∫=

The three dimensional correlogram volume
(frequency x lag x time)

time

lag
(pitch)

frequency

The zero-lag face of a correlogram
is the time-frequency intensity envelope

of the sound (frequency x time)

A correlogram slice at a particular time
reveals the short-time autocorrelations
of every channel at that time, arranged

as rows (frequency x lag)
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The “window-first” technique, and in particular its implementation with FFT-
based autocorrelation, has several drawbacks. First, the length of the window
its the range of lags that can be calculated. Second, FFT-based methods us
sample the lag axis at uniform intervals on a linear scale. A logarithmically s
pled lag axis makes more sense from a perceptual standpoint because huma
sitivity to fundamental frequency differences is roughly constant on a logarith
frequency scale (Moore, 1989). Defining a running autocorrelation by separa
the window function from the multiplication of the signal with its delayed ver-
sion, as shown in Equations 11 and 12, it is possible to sample any lag witho
regard to the window length.

 (11)

 (12)

The portion of the correlogram corresponding to each cochlear filter can the
calculated using a tapped delay line, multiplying its output by the original sign
and smoothing (windowing) the output. A block diagram of the complete ope
tion is shown in Figure 23. In the current implementation, fractional delay filte
(Laakso et al., 1996) are used to calculate the delay line outputs, and the sm
ing (window) filter consists of two cascaded one-pole lowpass filters, each wi
10 ms time constant (Ellis used a single, 25 ms, one-pole lowpass).

FIGURE 23. Block diagram of the calculation of the correlogram, after Ellis (1996).
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There is a minor complication that arises from the logarithmic sampling. The
bandwidth of a signal’s autocorrelation function is equal to that of the signal 
itself, and in order to avoid aliasing (under-sampling the signal), it should be
sampled at a rate at least greater than twice the highest frequency in the ori
signal. Therefore we must filter the signal so that it does not contain any freq
cies higher than half the local sampling rate of the lag axis. This is accomplis
by introducing another lowpass filter, prior to the delay line. In practice, this fil
is combined with the “light smoothing” filter in the inner hair cell model, and 
separate tapped delay lines are used for various regions of the lag axis. This
implementation is much more computationally expensive than the FFT-base
version; however, it is well suited to parallel processing architectures.

The examples presented in this dissertation sample the lag axis at 150 lags 
0.33 ms to 33 ms, corresponding to fundamental frequencies from 30-3000 
(approximately the full range for musical pitch). This spacing includes appro
mately 23 lags per octave (nearly 2 per musical semitone), in contrast with E
48 (4 per semitone, for fundamental frequencies from 40-1280 Hz). A dense
sampling would be desirable, but the current density was chosen as a compro
favoring computational speed and storage requirements over a more detaile
resentation. In practice, it is possible to interpolate between neighboring cell
the correlogram, so the limited sample density on the lag axis does not caus
problems for higher levels of representation. The time axis is sampled at 2 m
intervals. This is a somewhat finer resolution than Ellis’s 5 ms sampling, adop
mainly to improve visualization of instrument-tone onsets during later analys

4.3 The weft

The correlogram contains a great deal of information about the acoustic sign
that it represents, but it is unwieldy. With 150 lags and 54 filter channels per s
and 500 time slices per second, it is a more than 125-fold expansion of the o
nal sampled acoustic waveform (this calculation assumes 16-bit samples; w
32- or 64-bit floating-point samples, the growth increases). The weft represe
tion addresses this drawback.

The weft is a novel representation for quasi-periodic, pitched sounds, which w
proposed by Ellis and Rosenthal (1995) (and refined by Ellis (1996), from wh
this presentation is adapted) to address the limitations of traditional sine-wav
models. The name comes from a weaving term for a parallel set of threads r
ning through a woven fabric. A quasi-periodic input waveform creates vertica
“spines” in the lag-frequency plane (e.g., Figure 24a) that change slowly as a
function of time, and the values measured along the spines correspond to th
energy associated with the given lag (here, we may say pitch period). Traced
along time, these spines form a weft, as shown in Figure 24b. Because a pe
waveform with period T is also periodic at integer multiples of T, the spine pa
tern is repeated at multiples of the pitch period (corresponding to sub-harmonics 
of the pitch frequency). Only one weft is needed to represent the entire set o
harmonics; indeed, a single weft—stored as a period track and a corresponding 
80 The weft



FIGURE 24. The weft calculation. (a) A correlogram slice during a violin tone performed with a 
pitch near 500 Hz. Note the vertical structure present at the pitch frequency/
period, indicated by the vertical white line, and at its subharmonics/harmonics. 
The cross-hatch marks indicate the approximate frequency regions of the first six 
harmonic partials. (b) Spines are accumulated over time. The period track is given 
by the spine position; the smooth spectrum is given by the energy along the spine 
as a function of frequency.
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smooth spectrum—is sufficient to represent the harmonic portion of any quasi-
periodic signal.

The weft can be viewed as a source-filter model, with the period track control
a quasi-periodic impulse generator whose output is modulated by a time-var
filter controlled by the smooth spectrum, and this model can be used to resy
size portions of the acoustic waveform. Taking this view, we can express the
quasi-periodic impulse excitation as

 (13)

with

 (14)

where p(τ) is the period track. The output signal can be expressed as

,  (15)

where hw(τ;t) is the time-varying impulse response of the filter corresponding
the smooth spectrum. The task of weft-analysis is to recover p(τ) and hw(τ;t) 
(usually thought of in the frequency domain, as Hw(ω;t)). This decomposition is 
not unique, but it is the simplest to define and is relatively simple to compute

Ellis (1996) describes a complicated algorithm for recovering the period trac
and smooth spectrum of multiple, overlapping wefts from the correlogram vo
ume, even when the quasi-periodic portions of the acoustic signal are “corrup
by wide-band and transient noise. Readers interested in the processing deta
should consult his excellent presentation. However, most of the details of the 
extraction algorithm are unnecessary for the discussion here. The signals us
this work are simpler than those used by Ellis, and my implementation simpli
Ellis’s algorithm in several ways.

With the assumption that the input signal contains only one source of quasi-
odic vibration, it is relatively simple to recover the period of vibration given a 
single time-slice of the correlogram volume. The most commonly used meth
(and the one used by Ellis) is to integrate over the cochlear position dimensio
create a summary autocorrelation. The pitch of the signal—at that time—is then
given by the lag exhibiting the largest peak. As mentioned earlier, this simple
method, with minor variations, has been used as a model of human pitch pe
tion with good results on a wide range of examples (Meddis & Hewitt, 1991a
1991b). The principle weakness of the summary-autocorrelation approach is
it is prone to (sub)harmonic errors—that is, it occasionally generates pitch e

e t( ) δ t ti–( )
i

∑=

ti arg
t

2π
pτ
------ τd

0

t

∫ 2π i⋅=

 
 
 
 
 

=

xw t( ) e τ( )* hw τ t;( )[ ] t( )=
82 The weft



use 

rated 
lo-
the 
 of 
lo-
 is an 
 val-
f 
ets 
itch 

am 
ion. 

a-
ram 
n 
e 
ls. 
se 
he 
tem 

pre-

actly 
-
ling 
tion 
eans 

 as 

ts 
e-
, a sin-
s of 
 is 
 seg-
men-
sical 
mates that differ from human pitch judgments, most often by an octave, beca
the “wrong” peak is chosen accidentally.

The approach taken here is more complex, but more robust for signals gene
by orchestral instruments. Rather than find peaks in a summary of the corre
gram slice, the current implementation searches for sets of local maxima at 
same pitch period across a range of cochlear channels. Each such collection
maxima is considered in turn, and the one that best explains the entire corre
gram image is selected. The selection is based on two simple heuristics, and
exercise in rule-based programming. First, if the total energy (the sum of the
ues at the maxima) of a set is much smaller (by some threshold) than that o
another set, the weaker set is discarded. Second if the pitch periods of two s
with similar total energy is related by an integer ratio, the set with the larger p
period is discarded.

After the pitch period is determined, a cross-section is taken of the correlogr
slice, recording the energy at the pitch period as a function of cochlear posit
This is a first-order approximation to the smooth spectrum at the time corre-
sponding to the correlogram slice. Ellis makes several refinements to this me
surement. First, he uses the local peak-to-trough energy ratio in the correlog
slice to estimate the energy of locally wide-band noise in the channel. He the
subtracts the result from the smooth spectrum. Second, he uses non-negativ
least-squares (NNLS) inversion to account for the overlap of the filter channe
These refinements are not used in the current implementation, in part becau
they are computationally expensive (NNLS is an iterative procedure). Also, t
wide-band noise components in the recordings used to train and test the sys
were relatively small, so the refinements would not change the computed re
sentation drastically. 

Although the smooth spectrum computed in this way does not correspond ex
to the time-varying spectral envelope of the instruments analyzed, it is a reason
able approximation. It has several desirable qualities from a perceptual-mode
viewpoint. For example, the spectral envelope is computed with a local resolu
corresponding to the bandwidth of the appropriate cochlear channels. This m
that the first 4-6 harmonic partials of a quasi-periodic sound of any pitch are 
resolved and can be analyzed individually. Higher harmonics are represented
overlapping groups within so-called critical bands. Human listeners perceive 
only the group properties of partials above roughly the 6th, and this limitation is 
inherent in the representation at this level. 

The recordings used to test the current implementation are of solo instrumen
playing musical phrases and isolated notes. A single weft very naturally repr
sents an isolated note, and as long as a phrase is played one-note-at-a-time
gle weft can represent it. However, since it will be useful to analyze propertie
single notes within phrases (e.g., for their attack properties), the period track
segmented into regions corresponding to relatively stable pitch periods. Each
ment forms a separate weft, usually corresponding to a single note. This seg
tation stage is not strictly necessary, and it may create problems for some mu
The weft 83
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signals, such as a soprano singing with extremely exaggerated vibrato or a j
trombone played with pitch glides. It also does not correspond strictly to my v
of music perception, in which a rapid sequence of notes may be heard as a s
entity rather than as a series of separate entities. Segmentation is adopted h
only because it simplifies certain parts of the next stage of representation, at
conceptually.

The weft elements do not contain information about any non-periodic compo
nents of the input signal. This means that, for example, bow, breath, and val
noises are not represented at this level. Although such components would b
needed to fully explain human sound-source recognition abilities, they are no
necessary to account for a great deal of the human experimental data, as w
demonstrated in Chapter 6.

4.4 Note properties / source models

In the next representational stage, perceptually salient features are measure
from the weft representation and accumulated over time to form a model of a
sound source as it is heard. Because the weft is already made up of percept
salient components, feature extraction is generally very simple and is accom
plished with heuristic signal-processing techniques. In this section, feature 
extraction is illustrated with example tones produced by six instruments (rep
senting classes with distinct excitation and resonance properties). Short segm
of the period tracks and smooth spectra for six sample tones, performed res
tively by violin, trumpet, oboe, clarinet, flute, and alto saxophone, are shown
Figure 25. In examples where information is integrated over multiple notes, 
recordings of chromatic scales are used for illustrative purposes.

The features extracted from the weft representation are of two types. Some 
direct measurements on a physically meaningful scale, such as a ratio of en
gies; others are pseudo-binary indicator features, representing the presence
absence of a particular attribute. Not every feature is applicable to every sou
source, and, in particular, some features are hierarchically dependent on oth
For example, although it might make sense to define the “vibrato depth” of a 
vibrato note to be zero, the relative strength of amplitude- to frequency modu
tion (a ratio) has no meaningful definition in the absence of vibrato.

The representation at this level consists of a frame (Minsky, 1974) for each sound 
source, or sound-source category, with each frame containing a slot for each fea-
ture. Because each sound source may have a different set of applicable feat
the set of slots may vary from one frame instantiation to another. In Chapter 
examples will be given of methods attached to particular slots, and of default slo
values inherited from parent nodes. For now, the frames may be thought of a
ture lists, temporarily ignoring the more powerful attributes of the representa
84 Note properties / source models



FIGURE 25. Period tracks and smooth spectra for example tones produced by (a) violin, (b) 
trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each case, the 
main panel shows the smooth spectrum as a function of time (abscissa) and 
cochlear frequency (ordinate); energy level is indicated by intensity, ranging from 
low (white) to high (black) over a range of 75 dB. The lower panel displays the 
period track, expressed deviation in cents from 440 Hz (a logarithmic scale, with 
100 cents equivalent to a musical semitone, or a frequency/period ratio of 21/12).
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Rather than storing the feature values themselves, statistical summaries of t
feature values are accumulated as sounds produced by a particular source a
heard. In general, observations of each feature are assumed to have been g
ated by a process with a Gaussian distribution, for which the sample mean a
standard deviation are sufficient statistics (Duda et al., 1997). Along with these 
values, the number of samples used in their calculation is recorded, so that 
tics from multiple source models may be pooled later on.

Because instruments may behave differently in different portions of their pitc
range, many of the feature statistics are accumulated separately as a functio
pitch or frequency range. It will be obvious from the presentation when this is
case. Table 3 lists the features considered in this chapter.

Spectral
Features

Spectral centroid (and relative spectral centroid)

Average relative spectrum

Average relative spectrum by partial #

High-frequency rolloff rate and cutoff frequency

Spectral irregularity and # of “zeros”

Relative energy in odd and even partials

Pitch, Vibrato, 
and Tremolo 

Features

Pitch range

Tremolo: absolute strength and relative (to vibrato) 
strength and phase

Centroid modulation: absolute strength and relative (to 
vibrato) strength and phase

Individual harmonic amplitude modulation: absolute 
strength and relative (to vibrato) strength and phase

(pitch “wobble”)

(pitch jitter)

Attack
Features

Relative onset time by partial frequency

“Rise likelihood” by frequency and post-onset time

(# of “blips”)

(Explicit onset skew)

(Rise rates) 

Other
Possibilities

(Inharmonicity)

(Note-to-note transitions)

(Explicit identification of resonances)

(“Cognitive” cues)

TABLE 3. Features considered in this chapter. Features in parentheses have not been 
implemented.
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4.4.1 Spectral features

As discussed in Chapter 3, the harmonic spectrum contains a great deal of i
mation about the sound source, possibly including, for example, the center-f
quencies of prominent resonances and the presence of zeros in the source-
excitation. Relatively weak strength of even partials can be indicative of the 
cylindrical air column (closed at one end) used in clarinets, and overall irregu
ity of the spectrum may be indicative of the complexity of a sound source’s r
nance structure. These features and others are readily computed from the w
representation.

The spectral centroid is a simple feature that correlates strongly with the per-
ceived brightness of a sound. It is trivially calculated from the smooth spectrum
of the weft representation by computing the first moment of the energy as a 
tion of frequency, using the cochlear-channel index, k, as a log-frequency axis:

.  (16)

Here, E(k) is the energy in cochlear channel k. The result may be converted to a 
frequency scale by the following transformation:

 (17)

This equation is based on the current implementation, for which the center fr
quency of channel 31 is 1000 Hz (the 1/6 factor arises because there are six
cochlear channels per octave). It is worth noting that these measures are no
invariant with respect to overall coloration of the audio signal.

Because the relationship between pitch and brightness is important to the pe
tion of musical sounds, the relative spectral centroid, calculated as the ratio of 
the spectral centroid to the pitch, is a useful feature. Using the period track f
the weft representation, the relative centroid can be calculated by multiplying
spectral centroid (on a frequency scale) by the pitch period (in seconds). Th
equivalent to dividing by the pitch frequency. The calculation can also be per
formed by converting the pitch frequency into its equivalent filter-channel ind
and then subtracting the result from the spectral centroid expressed the sam
(this is due to the trivial equivalence of subtraction of logarithms to division). T
mean spectral centroid and relative spectral centroid—estimated as a functio
pitch from recordings of chromatic scales—are shown for the six instruments
Figures 26 and 27.
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FIGURE 26. Average spectral centroid as a function of pitch, estimated from chromatic scales 
performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto 
saxophone. The abscissa is the pitch frequency, and the ordinate is the spectral 
centroid, expressed as a frequency. In each case, the solid line indicates the 
mean value for tones at that pitch, and the dotted lines indicate bounds of one 
standard deviation.
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FIGURE 27. Average relative spectral centroid as a function of pitch, estimated from chromatic 
scales performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) 
alto saxophone. The abscissa is pitch frequency, and the ordinate is the relative 
spectral centroid, expressed as a ratio of spectral centroid frequency to pitch 
frequency. In each case, the solid line indicates the mean value for tones at that 
pitch, and the dotted lines indicate bounds of one standard deviation.

(a) (b)

(c) (d)

(e) (f)

Pitch (Hz) Pitch (Hz)

violin trumpet

oboe clarinet

flute alto saxophone

R
el

at
iv

e 
C

en
tr

oi
d

R
el

at
iv

e 
C

en
tr

oi
d

R
el

at
iv

e 
C

en
tr

oi
d

31 125 500 2k 8k
0

1

2

3

4

31 125 500 2k 8k
0

1

2

3

4

31 125 500 2k 8k
0

1

2

3

4

31 125 500 2k 8k
0

1

2

3

4

31 125 500 2k 8k
0

1

2

3

4

31 125 500 2k 8k
0

1

2

3

4

Note properties / source models 89



 esti-
e. 
-
om-
hich 
han-
. Esti-

or 

rtial 
own 
 

cu-
 
tive 

or 

of 
 

imple 
the 

ea-
e 
pec-
l 

 are 
vely, 
ng 
bas-
n 
rded 
s the 
c-

u-
The period track and smooth spectrum of the weft representation can used to
mate the relative strengths of the harmonic partials comprising a musical ton
Given the pitch frequency, it is straightforward to identify the filter-bank chan
nels that are dominated by each of the first six harmonic partials, simply by c
paring their center frequencies to the expected frequencies of each partial (w
are just integer multiples of the pitch frequency). The energy levels in those c
nels are taken as estimates of the energy levels of the corresponding partials
mates are made in the same way for partials above the 6th, with the caveat that 
more than one partial influences the energy in any given cochlear channel. F
each region of pitch-period stability in the weft’s period track (usually corre-
sponding to a single musical tone), the maximum energy for each resolved pa
(or channel containing unresolved partials) is determined. The results are sh
in Figure 28 for single tones produced by the six instruments. The harmonic
spectrum is normalized by its maximum value, and the average relative spectrum 
is accumulated as a function of frequency, with three separate estimates cal
lated: one from the first three odd-numbered partials, one from the first three
even-numbered partials, and one from the entire spectrum. The average rela
spectra of the six instruments (based on all partials, except for the clarinet, f
which both the odd and even estimates are displayed) are shown Figure 29.

In addition, the relative levels of the first six partials are stored as a function 
pitch. This representation highlights the reduced strength of the first partial in
double-reed instruments, the reduced even partials in the clarinets, and the s
formant structure of the brass instruments. Figure 30 shows the strength of 
first six partials as a function of pitch frequency for the six instruments.

Several subsidiary features are also computed from the harmonic spectra m
sured from individual notes. For example, the average difference between th
energy of a partial and its two neighbors is computed as a local measure of s
tral irregularity and accumulated both as a function of frequency and of partia
number. Partials with particularly low energy levels relative to their neighbors
noted, as they may correspond to zeros of the excitation spectrum. Alternati
they may be due to a suppression of “even” harmonics in a cylindrical vibrati
air column (as in the clarinet), or to suppression of the first partial (as in the 
soon). In addition, a line is fit to the high-frequency roll-off of the spectrum (i
dB energy versus log frequency). The slope of the line (in dB/octave) is reco
as the high-frequency roll-off rate, and the frequency at which the line crosse
maximum energy level of the spectrum is recorded as an estimate of the spe
trum’s cut-off frequency. Both the roll-off slope and cut-off frequency are acc
mulated as functions of pitch frequency.
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FIGURE 28. The maximum values of the harmonic spectra for isolated tones performed by (a) 
violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each 
case, the energies of the first six partials are estimated independently. Above the 
sixth, energy is measured by cochlear channel rather than by partial number 
because multiple partials mix in each cochlear channel. The abscissa is 
frequency; the ordinate, relative energy (in dB). The frequencies of the first 20 
partials are indicated by vertical lines (dotted lines, above the sixth partial). 
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FIGURE 29. The average relative spectra measured from chromatic scales performed by (a) 
violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each 
case, the solid line results from an average over all harmonics, and the dashed 
lines indicate bounds of one standard deviation. The abscissa is frequency; the 
ordinate, relative energy (in dB). In each case, the solid line indicates the mean 
value for partials at that frequency, and the dotted lines indicate bounds of one 
standard deviation. In panel (d), the relative spectra computed using the low odd- 
and even-numbered partials are shown because they differ significantly (compare 
to Figure 12 on page 61).
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FIGURE 30. Average strength of the first six partials as a function of pitch frequency, measured 
from chromatic scales performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, 
(e) flute, and (f) alto saxophone. 
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4.4.2 Pitch, vibrato, and tremolo features

As described in Section 4.3, the pitch of a sound is made explicit by the weft
which represents it as a function of time. Pitch is a useful feature on its own 
ruling out sound-source hypotheses during the recognition process, but it 
becomes even more useful when considered in combination with other featu
In Section 4.4.1, pitch was used as the abscissa in many of the feature repre
tions. In this section, the pitch range of a sound-source is represented explic
along with the effects of the source’s resonance structure when the performe
applies a periodic pitch variation (vibrato). Other features that may have an a
on human recognition, including pitch “wobble” during the attack of brass ton
and random variations, or jitter, have not yet been included in the framework 
described here, although they may readily be computed from the weft repres
tion. For now, they are postponed as obvious future developments to the cur
system.

The pitch range of a sound source is represented by a histogram of 1/6-octa
bands. The value in each histogram bin is simply the period of time for which
sounds in the corresponding pitch-frequency range have been observed. Th
maximum value of a histogram bin is limited to ten seconds, an ad hoc threshold 
representing “sufficient” evidence that the sound source can produce sounds
that pitch range. Histograms accumulated for chromatic scales performed by
six instruments are shown in Figure 31.

As described in Chapter 3, vibrato is a performance technique whereby a pla
imposes a nearly periodic pitch variation—with a period in the neighborhood 
Hz—on the steady-state pitch frequency of the note being played. In order to
detect this variation, the period track of the weft representation is converted 
pitch frequency, and a short-time discrete Fourier transform is computed ove
modulation frequency range from 2-15 Hz, using a 400 ms Hamming window
and a 50 ms hop size. If the spectrum exhibits a peak in the 4-8 Hz range, th
peak’s amplitude (in cents) and phase are recorded, along with the relative t
(measured in hops). Using the smooth spectrum component of the weft, the 
process is applied to the spectral centroid (expressed in channels), the total 
energy (expressed in dB), and to the energy of each of the first six harmonic
tials.

These first-order features are then organized into several second-order featu
The modulation strength of the total energy is termed the tremolo strength. The 
mean and variance of its amplitude (in dB) is recorded as a function of pitch, 
its amplitude relative to the vibrato strength (expressed in dB/cent). The phas
the amplitude modulation is compared to that of the frequency modulation, a
the probability of the two being out of phase is recorded. Similarly, the absol
and relative strength of the spectral centroid modulation is recorded as a fun
of pitch, along with the probability of being out of phase with the frequency m
ulation. Finally, the absolute and relative modulation strengths and phase for 
of the first six partials is recorded as a function of partial number and of fre-
quency (compiled across all six).
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FIGURE 31. Pitch range histograms, in 1/6-octave bins, measured from chromatic scales 
performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto 
saxophone. The abscissa is pitch frequency; the ordinate, time (in seconds; each 
bin is limited to 10 seconds as described in the text).
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FIGURE 32. The effect of vibrato on a violin tone. Each panel shows a separate feature: pitch, 
total energy, spectral centroid, and the energy of each of the first six partials. The 
dashed lines are superimposed at the maximum value of the pitch signal for each 
cyle of vibrato, showing how some of the features vary out of phase with others.
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Figure 32 shows the pitch, energy, and centroid waveform for a sample violin
tone, along with the amplitude waveforms for the first six partials. (Note that 
ordinates have been scaled so that each waveform occupies approximately 
same space on the page.) Figures 33-35 show the various vibrato/tremolo fea
accumulated from chromatic scales played by the example instruments.

FIGURE 33. The effect of vibrato on the harmonic partials, mesaured by amplitude modulation 
strength as a function of partial frequency. Data for trumpet, clarinet, and alto 
saxophone have been omitted because their chromatic scales were not performed 
with vibrato.
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FIGURE 34. The effect of vibrato on the overall energy and spectral centroid. Data for trumpet, 
clarinet, and alto saxophone have been omitted because their chromatic scales 
were not performed with vibrato.

violin oboe flute

0

1

2

3

4

5

0

0.5

1

0

0.5

1

ab
so

lu
te

 a
m

pl
itu

de
(d

B
)

e 
am

pl
itu

de
(d

B
/c

en
t)

P
(in

 p
ha

se
 w

ith
 v

ib
ra

to
)

re
la

tiv
ab

so
lu

te
 a

m
pl

itu
de

(c
ha

nn
el

s)
re

la
tiv

e 
am

pl
itu

de
(c

ha
nn

el
s/

ce
nt

)
P

(in
 p

ha
se

 w
ith

 v
ib

ra
to

)

Pitch frequency (Hz)

0

0.5

1

1.5

2

0

0.2

0.4

0.6

250 500 1k 2k
0

0.5

1

250 500 1k 2k 250 500 1k 2k

Tr
em

ol
o 

Fe
at

ur
es

C
en

tr
oi

d 
M

od
ul

at
io

n 
Fe

at
ur

es
98 Note properties / source models



he 
nt 
r-
ro-
 the 
ocal 
rmonic 
in dB/
s 
ions 
erant 

 by 
ity 
bly 

ve 
re 
 might 

ation 
82). 
 or 
 an 
ergy 

he 
s a 
ons 
e 
ing 

 
si-
h the 
orre-

ur-
t the 

e 
4.4.3 Attack transient properties

It is evident from the available human perceptual data (see Chapter 3) that t
attack transient of an isolated musical tone played on an orchestral instrume
contains crucial information for identifying the particular instrument that gene
ated the tone. It is not clear, however, which aspects of the attack transient p
vide the essential information. Indeed, it is not even clear how to define when
“transient” ends and the “steady-state” begins. The literature is at best equiv
on these issues. It has been suggested that the relative onset times of the ha
partials are important features, as are their attack rates (perhaps measured 
ms). Little has been written, however, about how to measure these propertie
from recordings of real instruments, and I am aware of no published descript
of techniques for measuring these properties from recordings made in reverb
environments such as concert halls.

The techniques described here are necessarily tentative. They were inspired
visual inspection of the weft representations of tones from the McGill Univers
Master Samples collection (Opolko & Wapnick, 1987), and they work reasona
well on the very cleanly recorded tones in that collection. The techniques ha
not, however, been adequately tested on a broad data set. I include them he
because they may serve as a useful starting point for other researchers who
replace them with better techniques.

The signal-processing techniques underlying the attack-transient characteriz
performed here were inspired by methods for visual edge detection (Marr, 19
The insight is that a sharp rise in acoustic energy corresponding to an attack
onset is analogous to a change in light intensity corresponding to an edge in
image. The algorithm begins by measuring the slope and curvature of an en
signal expressed as a function of time. These are computed using the surfboard 
technique (Schloss, 1985), which fits a regression line to local segments of t
signal using a minimum mean-square error criterion, and records its slope a
function of time. This operation is less susceptible to noise than approximati
based on simple differences (Schloss, 1985). After the slope is computed, th
technique is reapplied to compute the curvature. Estimates are calculated us
seven different regression-line lengths (or scales), ranging exponentially from 5 
ms to 250 ms. The short windows are suitable for characterizing very rapid 
changes, the long windows for slower changes.

When the slope and curvature estimates are complete, the system identifies
neighboring (in scale) zero crossings (of the curvature) that correspond to po
tive slopes. The positions of these zero crossings correspond to times at whic
local energy rise rate is at a maximum. For percussive sounds, these times c
spond very closely to the perceptual attack time of the sound (Gordon, 1984).

Each set of adjacent zero-crossings is termed a rise. The slope curve (at the 
appropriate scale) is examined at the time of each rise, and the time range s
rounding the rise-time for which the slope is greater than 50% of the slope a
rise-time is called the rise region. A regression line is fit to the energy signal in 
this region, and its slope and total energy change is noted along with the tim
Note properties / source models 99
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index of the rise. When rises occur in close temporal proximity across a rang
cochlear filter channels, their average time index is termed the attack time. 

The effect of these manipulations is to fit simple linear segments to the ener
curve in the regions where the energy level is increasing substantially. The c
plexity of the algorithm seems to be necessary to make reliable measuremen
changes that occur on different time scales (for example, a plucked string m
reach full amplitude in 5 ms, whereas a bowed string might require 500 ms—
difference of two orders of magnitude).

Four time windows (0-50 ms, 50-100 ms, 100-200 ms, and 200-400 ms) are
examined for additional rises after each attack. The probability of a rise occur
(the “rise likelihood”) is estimated for each filter channel and each time wind
by pooling over all attacks. The motivation for this measurement comes from
observation that, for example, energy in partials produced by bowed-string 
instruments rises irregularly in both time and frequency, but energy in partial
produced by brass instruments rises more predictably (earlier at low frequen
later at high frequencies).

Finally, the relative onset time is computed for each partial by selecting the las
occurring (within the 200 ms window) rise from the appropriate filter channel
calculating the time index at which the regression line reaches within 3 dB o
maximum, and subtracting the attack time. The mean and standard deviatio
the relative onset time is estimated for each filter channel by pooling over all
attacks.

It is to be stressed that these techniques are tentative. Attack-transient chara
ization has received frustratingly little attention in the acoustics and synthesi
erature. This has the potential to be a fertile area for future research.

4.5 The model hierarchy

The recognition system’s knowledge base is a taxonomic hierarchy of sourc
models of the type described in Section 4.4. In the current implementation, t
taxonomy is specified in advance, rather than being acquired during training.
ure 35 shows an example taxonomy. The taxonomy has three levels. At the 
most level is a single category, labeled “All instruments.” At the lowest level a
the individual instrument classes. At the middle level, the instruments are as
bled into family groups based on their common excitation and resonance str
tures. Thus, the pizzicato (plucked) strings are separated from the bowed str
and the muted brass instruments are separated from the non-muted brass in
ments. The woodwinds are divided into the flute, clarinet, double-reed and s
phone subgroups, in accordance with the discussion in Section 3.3.3 on pag

In the experiments performed in Chapter 6, each training sample is labeled w
the name of the appropriate bottom-level (leaf) node of the taxonomy. During
training, feature values are accumulated (as described in Section 4.4) at the
100 The model hierarchy
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appropriate leaf node and at all of its ancestors. By this method, the double-reed 
node, for example, accumulates feature data from all oboe, English horn, bas-
soon, and contrabassoon samples.

Alternately, it is possible to train only the leaf nodes and then to combine the
accumulated feature distributions appropriately to train the more abstract no
of the taxonomy. This method can be used to facilitate the comparison of ma
different taxonomies.

FIGURE 35. Taxonomy used in Computer experiment #3 (Section 6.5) to test the recognition 
system.
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As described in Chapter 1, recognition is a process of gathering information 
about an object in the environment so as to be able to predict or more reliab
infer its behavior or properties. Recognition was described as a process of ca
rization at multiple levels of abstraction, typically beginning at some intermed
ate level and becoming more specific (or general) according to the needs of 
perceiver. Chapter 4 showed how an audio signal could be transformed throu
series of representations into a high-level sound-source model. In this chapt
methods for categorization using sound-source models as prototypes are devel-
oped, and a computational model of the recognition process is presented.

5.1 Overview and goals

The recognition framework described here is an amalgam of several differen
techniques, with conceptual ties to taxonomic Bayesian belief networks (Pea
1988), decision trees (Breiman et al., 1984), spreading activation (Maes, 198
and traditional search (Winston, 1992). This mélange is the result of an attem
satisfy a conflicting set of desiderata, derived in part from the evaluation crite
described in Section 2.2:

• Robustness: A system based on the framework should perform well on cl
sification and identification tasks, exhibiting generalization and handling 
real-world complexity. It should be able to classify new examples of any p
ticular class reliably, given sufficient exposure to other sound sources 
belonging to that class. This performance should degrade gracefully as 
available sensory data degrades. 
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• Extensibility : The framework should scale well from small to large sets o
object classes; adding new classes should not drastically alter the syste
performance. It should also be possible to add new features to an objec
class description, or to add new discrimination functions for classification
and these additions should improve the systems level of performance.

• Flexibility : The framework should not be dependent upon features that m
not always be available. Its performance on classification tasks should 
degrade gracefully as features are removed from consideration, or as th
quality of feature measurements decreases (the flexibility criterion overlaps 
the robustness criterion somewhat). The quality (and specificity) of classifi
cation should vary directly with the effort expended by the system. If onl
rough classification at an abstract level is needed, then less effort should
required than would be for a more detailed classification.

• Consistency: The same basic algorithm should work well for a very brief 
exposure to a sound source (e.g., a single musical tone produced by an
instrument), for extended exposure (an entire cadenza), and for the con
uum between the two extremes. Presumably, performance on classificat
and identification tasks will improve as the degree of exposure increases

The algorithm developed here is based on a taxonomic hierarchy of sound-so
classes. There is a substantial literature on tree-based classification algorith
but unfortunately there are as yet no deep theorems proving their optimality 
competence (Ripley, 1996). There are, however, several justifications for the
use. For example, there is evidence from psychology that humans use hiera
cal structures during the recognition process (Rosch, 1978; Rosch et al., 197
Hierarchies are often good models for the structure of the world (Bobick & R
ards, 1986; Bobick, 1987), and hierarchical methods can make better use of
sparse training data than their non-hierarchical counterparts (McCallum et a
1998). If during the recognition process, the perceiver can rule out, or prune
branches of the hierarchy, the classes represented by those branches need
be considered directly, and this can provide immense computational savings
non-hierarchical methods; a system with fixed computing power can indirect
consider a much larger set of possibilities than it could consider directly.

Like a decision-tree classifier, the algorithm described here begins at the roo
node of a tree—at the top of the taxonomy—and makes decisions, traversing
from node to node as the classification is performed. There are, however, se
critical improvements that distinguish it from traditional decision trees (Breim
et al., 1984). In a decision tree, only the leaf nodes are usually interpretable 
terms of coherent object classes, whereas each node of the taxonomic hiera
used here represents a meaningful grouping. In a decision tree, the process
choosing one child node over another from a particular parent node is usuall
or-nothing, and the decision is usually based on a single feature. Further, the
of features used at each decision node is specified in advance (usually the fe
tures are chosen during a training process). In contrast, the algorithm used h
improvisational. It decides on the fly which features to use, based on the cur
context, and it can be configured to employ a range of behaviors from greed
or-nothing decisions to exploring the entire tree and testing every leaf node. 
104 Overview and goals
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main drawback is that, in the current implementation, the taxonomy must be
specified rather than learned from training data. In contrast, decision trees a
typically learned rather than prespecified.

5.2 Definitions and basic principles

In this section, we will ignore the taxonomy and first consider non-hierarchic
classification. To begin, we define a categorization as a set of non-overlapping 
categories that partitions a set of sound sources into non-overlapping group
Each category has a single prototype, consisting of a sound-source model as 
described in Section 4.5. (In general, each category could have multiple prot
types with only minor extensions to the algorithms described here.) The goa
the categorization process is to determine which category an unlabeled soun
source belongs to, based on measurements of its acoustic features.

The category prototype can be viewed as a generative probabilistic model fo
features of sounds produced by sound sources in that category. As describe
Chapter 4, the prototype is a frame with a slot for each feature. Most of the fea-
tures are assumed to arise from Gaussian processes, and each slot contain
mean and variance of feature values observed from sound sources of the ap
priate category. In addition, each slot has an associated comparison method, 
which is used to make probabilistic comparisons between models. In genera
we are given a model corresponding to an unlabeled sound source, the com
son methods of each category prototype will calculate the log likelihood that
feature values observed from the unlabeled sound source could have arisen
each category. This is accomplished by using Bayes’ rule to invert the proba
tic models, making the naive Bayes assumption that each feature is independen
of every other feature and of the feature’s context given the category identity
Despite the fact that the independence assumption is strongly violated by th
actual data, the naive Bayes technique is very flexible and works well in man
situations (McCallum et al., 1998). The rest of this section describes the pro
listic basis of the algorithm in more detail.

Consider a set of N categories and a single feature measurement from an unla
beled sound source M. Each category has its own prototype, consisting of the 
mean and standard deviation of a normally distributed feature. The probability of
observing a particular value  of feature f, given that it is observed from a mem
ber of category n, is given by

,  (18)

where  and  are the mean and standard deviation for the feature , g
membership in category n. We use Bayes’ rule to invert this expression, yieldin
the likelihood of membership in each category, given the feature observation

f0

P fj f0 Cn=( ) 1

2πσn j,
2

--------------------exp 1
2
---

f0 mn j,–( )

σn j,
2

------------------------
2

–
 
 
 

=

mn j, σn j, fj
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The denominator in Equation 19 is a normalizing factor that does not change
from category to category, and is thus often ignored in practice. When more 
one feature value is observed, their values are assumed to be independent o
other (the naive Bayes assumption), and the likelihood values simply multipl
Defining

,  (20)

the likelihood of class n (ignoring the normalizing factor) is given by

.  (21)

Because the product of likelihoods often results in very small values of , it
more numerically stable to compute these values using logarithms:

 (22)

and

.  (23)

Once the likelihood has been calculated for each category, the maximum a poste-
riori estimate of the unlabeled source’s category is simply the category with 
largest probability value. The current implementation of the system describe
this chapter assumes that all categories are equally likely a priori, so the  
terms are ignored, and the result is the maximum likelihood estimate of category 
membership.

5.3 Taxonomic classification

Now consider a taxonomic hierarchy, as illustrated in Figure 36. We define th
structure to be a tree with a single root node, labeled A in the figure. A node may 
have any number of immediate descendents, or children. In the figure, node A has 
three children, labeled , , and . If a node has more than one child, it
called a decision node. If it has none, it is called a leaf node. In this formulation, 
each node represents a category. Node A represents the category that contains a
sound sources. Nodes , , and , represent a partitioning of the sound
sources represented by node A into three categories. Let the area labeled “Leve
1” be a categorization in the sense defined in Section 5.2. Each category may
further subdivided into additional subcategories. In the figure, each of the ca
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also make up a categorization, labeled “Level 2.” The division into subcatego
may continue indefinitely, or until each category contains only a single sound
source. Within this framework, each level of the taxonomy represents a differen
level of abstraction. In the figure, “Level 1” is more abstract than “Level 2.”

FIGURE 36. An example of a taxonomic hierarchy. Each node represents a class or category; 
each level is a categorization. Other properties are discussed in the text.

The recognition process starts at the root of the taxonomy and makes a maxi
likelihood decision at each node (as described in Section 5.2), recursively st
ping through decreasingly abstract levels of the hierarchy. Several variations
this algorithm have been implemented, each with different strengths and we
nesses. In Chapter 6, several of these possibilities are tested and their perfo
mance levels evaluated. The best approach in a particular scenario depends
many factors, which will be discussed in Chapters 6 and 7.

5.3.1 Extension #1: Context-dependent feature selection

One of the biggest hurdles in constructing a successful pattern-recognition s
tem is dealing with insufficient training data. As the number of parameters in
probabilistic model increase, so does the amount of training data required to
mate the parameter values; with a fixed amount of training data, additional fe
tures can cause the performance of a classifier to decrease. This is common
known as the curse of dimensionality or the bias-variance tradeoff (Therrien, 
1989). One approach to alleviating the difficulties associated with using a lar
number of features is to select a small subset of the features that is best sui
the task at hand. In a taxonomic classifier, usually there are a small number 
child categories to decide among at any particular node, and intuitively, we 
expect that the best feature subset for classification will be different for each
of categories. For example, although pitch range may be an excellent feature
distinguishing between violin and double bass, it is not as good for distinguish
between violin and viola.

B1 B2 B3 C1 C6

A

B1 B2 B3

C3C2C1 C4 C5 C6

Level 0

Level 1

Level 2
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In the system constructed for this dissertation, several approaches for featur
selection were tested. First, we observe that the category prototypes of the c
dren of a node can be used directly to estimate the salience of each feature. The 
discriminability of two normal distributions with the same variance is given by

,  (24)

where  and  are the means for the two distributions, and  is their com
mon standard deviation. The probability of error of a maximum-likelihood es
mator based on a single normal feature is monotonically related to the inverse of 

, so a the  value of a feature increases, so does its usefulness as a feat
classification.

There are several different ways of calculating analogous measures when th
variances are not equal, such as the mutual information or the Bhattacharya dis-
tance (Therrien, 1989), but a simpler approach was taken here, using the ave
variance

.  (25)

 is taken to be the discriminating power of a feature in the context of two cate
gories. At each node in the hierarchy, the discriminating power of each featu
for each pair of child categories is computed and stored at the node. 

A second observation is that as sounds are heard from a sound source who
egory is not known, some features may not be available at all, and some ma
measured more reliably than others. Intuitively, the system should favor the m
discriminating features that have been most reliably measured. It makes no 
at all to think of making a decision based on only default feature values for wh
there is no supporting evidence.

From these two observations, several algorithmic variations are possible. As
described above, the system computes the discriminating power of each fea
for each pair of nodes under consideration. These numbers are averaged, a
result is taken to be the salience of the feature in the current context. Further, a
reliability estimate—a number between 0 and 1—is computed for each featur
based only on the model created for the sound source being recognized. Th
tures can then be ordered by the salience estimate, the reliability estimate, o
product of the two. The features with the highest scores are the most likely t
good discriminators, given the current context (defined to be the set of categories
currently under consideration). The system can then either choose some sub
the features or can use all of the features, weighted by their discriminating po
In the current implementation, this second option is accomplished by multiply
the log likelihoods returned from the comparison methods by the salience, th
estimated reliability, or both. These ad hoc computations have the effect of expo

d′
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nentiating the likelihood estimates and are not based on theoretical motivatio
Their practical usefulness will be evaluated in Chapter 6.

5.3.2 Extension #2: Rule-one-out

If some sort of feature selection is used in the system then the calculations o
ture salience may depend strongly on the particular set of categories under 
sideration. When more than two categories are being considered, it may be 
possible to do better than just choosing a set of features and computing a m
mum-likelihood estimate of category membership. The algorithm adopted he
a rule-one-out strategy. Given a set of k categories, the system identifies the mos
salient features, computes the likelihood scores, and removes from consider
the category with the least likelihood. After a category is ruled out in this man
the feature salience scores are recomputed in light of the new context and th
algorithm repeats. With this strategy, the classifier shifts the features during 
process, always choosing a suitable subset for the current context.

5.3.3 Extension #3: Beam search

One of the most significant drawbacks of hierarchical classifiers is that an er
made at one level cannot be fixed by choices made later at more specific leve
the classifier always chooses the maximum-likelihood category at each node
probability of a correct classification is equal to the product of correct-classif
tion probabilities at each node from the root of the tree to the leaf node corre
sponding to the “correct” classification. This can be a serious problem becau
the prototypes for the most abstract classes are necessarily the most vague
only because they comprise many different subcategories.

To deal with this problem, the system has been equipped with a beam search 
algorithm (Winston, 1992), which expands the best b nodes at each level of the 
hierarchy until the leaf nodes are reached, at which time a final maximum-lik
hood decision is made. This alleviates the error-compounding problem of the
greedy branch-selection case. The beam width, b, can be varied from one (greedy
branch-selection) to infinity (full search of the entire tree), trading classificati
performance for computational expense. If the maximum-likelihood decision
made at the most abstract nodes of the hierarchy are generally reliable, a be
width value of two or three is a reasonable compromise.

5.4 Strengths of the approach

It is worth reflecting upon how well the algorithm described above is likely to
satisfy the desiderata listed at the beginning of this chapter. Unlike many pa
recognition techniques, the algorithm does not depend on a fixed set of featu
for classification. Rather, it uses whatever information is available to make th
best decision it can. For this reason, the algorithm’s performance will degrad
gracefully—rather than failing altogether—when particular features are not av
able. The results of the experiments in Chapter 6 will show that, given a suita
set of features and comparison functions, the system generalizes from a sm
Strengths of the approach 109
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number of training examples and can robustly classify previously unheard ex
ples from learned sound-source classes. This satisfies the robustness criterion.

Systems based on the algorithm described above can easily be augmented 
new features and new sound-source classes. Adding a new feature requires
the addition of a new slot (with its corresponding comparison function) to the
description of each affected sound-source class. This can take place after th
tem has already been trained, and default slot values could—with only mino
extensions to the algorithm—be gradually replaced by sensory data as sound
recognized using other features. Adding a new sound-source class requires
the creation of a class prototype and the introduction of appropriate links to p
ent and child nodes. Again, this can take place after the system has already
trained; the only overhead is that pair-wise feature-salience ratings will have
calculated at the parent node, and some may have to be re-calculated at its 
tors. This satisfies the extensibility criterion.

Because the classification process operates in stages, traversing decision n
from the abstract to the specific, the algorithm scales well to very large numb
of sound-source classes, as long as reliable classifications can be made at e
node. Consider, for example, a system with N “leaf” nodes, representing the par-
titioning of all sound sources into the most specific set of classes that could 
needed in the recognition process. If N is very large, it would be prohibitively 
expensive to directly compare an unlabeled sound-source model to every pr
type in order to make a classification decision. If, however, each node of the
archy has k children (on average), the greedy branch-selection algorithm requ
that only klogkN comparisons be made—a huge savings for large values of N. 
The main drawback is that classification errors in the greedy algorithm com-
pound; these are addressed by the beam search algorithm, which trades cla
cation performance for computational expense. The multi-stage classification
process is particularly advantageous, however, if fine-grained categorization
not always necessary. Often, categorization at a more abstract level suffices
the task at hand, and in such cases, even fewer than klogkN comparisons need be 
made. The degree of effort required to make a decision is directly related to 
logarithm of the number of categories that must be considered. This and the
ity to choose appropriate features for a given context satisfies the flexibility crite-
rion. 

The final desideratum, consistency, is dependent on the implementation of the 
feature comparison methods and their ability to estimate their expected utilit
given a particular set of sensory data. If the comparison functions are able to
accurately gauge their ability to discriminate among the children of a node, t
system will automatically choose the best features to make each particular d
sion, given the information at hand.
110 Strengths of the approach
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5.5 An example of the recognition process

To illustrate the basic recognition algorithm and the effects of some of the ex
sions described in the previous section, consider the simplified musical-instr
ment taxonomy shown in Figure 37. In the example, the classifier is configure
use context-dependent feature selection based on the average discriminating 
power given the current context, with the rule-one-out and beam search exten-
sions (the beam width is set to two) described in Section 5.3.

When a new, unclassified, recording of a sound source is presented to the sy
feature measurements are assembled into a frame representation. For exam
isolated tone produced by playing a violin with vibrato might give rise to the 
of feature slots shown in Table 4.

5.5.1 Step one

The recognition process begins at the “All instruments” node. The current con
consists of the node’s children: the bowed string, brass, and double-reed gro
as shown in Figure 38. The model computes discriminating-power measurem
based on the stored prototypes for these categories. The features with  va
greater than one are shown in Table 5.

FIGURE 37. The simplified taxonomy used to illustrate the recognition process.

FIGURE 38. The current context at the beginning of Step one. The categories under 
consideration are Bowed strings, Brass, and Double reeds (shown in italics).
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Feature Details

Pitch range 1 measurement (the note falls in one 1/6-
octave band)

Spectral centroid 1 measurement (at the pitch frequency)

Average relative spectrum by 
harmonic number

6 measurements 

High-frequency rolloff rate 1 measurement (at the pitch frequency)

High-frequency cutoff frequency 1 measurement (at the pitch frequency)

Spectral irregularity 5 measurements (in various frequency bands

Number of zeros 1 measurement (at the pitch frequency)

Tremolo: absolute and relative 
strength and phase

1 measurement each (at the pitch frequency)

Centroid modulation: absolute and 
relative strength and phase

1 measurement each (at the pitch frequency)

Individual harmonic AM: absolute 
and relative strength and phase

6 measurements each (at frequencies of first 
six partials)

Relative onset time by partial fre-
quency

6 measurements (at frequencies of first six 
partials)

“Rise likelihood” by frequency and 
post-onset time

30 measurements (in 10 frequency bands and 
3 post-onset time windows)

TABLE 4. Features measured from an example violin tone.

Feature Average 
Number of 

measurements 
chosen

Relative onset time by partial frequency 3.514 5

Centroid modulation (relative phase) 2.395 1

Spectral irregularity 1.378 4

Individual harmonic modulation 
(relative phase)

1.208 4

Tremolo (relative strength) 1.177 1

Tremolo (relative phase) 1.175 1

Individual harmonic modulation 
(relative strength)

1.166 3

TABLE 5. Features with  values greater than one, given the current context at Step one.

d″

d″
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Considering that the stimulus is an isolated tone, it is not surprising that the m
salient features are related to the tone’s attack (relative onset time by partial
quency), and to vibrato (centroid and tremolo features). As discussed in Cha
3, bowed string attacks are much slower than brass or double-reed attacks. 
bowed-string instruments have much more complicated resonance structures
the brass and double-reed instruments, and vibrato highlights this difference

Log likelihood values for the three categories are computed based on the fea
(weighted by the  values). The double-reed category has the smallest like
hood value and is ruled out.

5.5.2 Step two

At the beginning of Step two, there are two categories under consideration, t
bowed strings and brass groups. Because the beam width is set to two, thes
gories are expanded, and their children become the new context. The curren
text therefore consists of the violin, viola, C trumpet, and French horn groups
shown in Figure 39. Features with  values greater than one are shown in T
6.

As is evident from a comparison of Tables 5 and 6, the relative salience of th
various features has shifted considerably. The average discriminating power
the relative onset time by partial frequency has been cut in half (but is still 
salient), and the spectral centroid has become very salient, as has the spect
irregularity (also evidenced by the number of zeros). As suggested by the di
sion in Chapter 3, the violin and viola have much more irregular spectra and
longer attacks than the C trumpet and French 

FIGURE 39. The current context at the beginning of Step two. The categories under 
consideration are Violin, Viola, C trumpet, and French horn (shown in italics).
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horn. The brass instruments tend to sound “brighter” than the string instrume
and thus have higher spectral centroid measurements.

Log likelihood values for the four categories are computed based on the feat
(weighted by the  values). C trumpet has the smallest likelihood value, an
is ruled out.

5.5.3 Step three

At the beginning of Step three, the current context consists of the violin, viola
and French horn groups, as shown in Figure 40. Features with  values gr
than one are shown in Table 7.

FIGURE 40. The current context at the beginning of Step three. The categories under 
consideration are Violin, Viola, and French horn (shown in italics).

Feature Average 
Number of 

measurements 
chosen

Centroid modulation (relative phase) 4.156 1

Centroid modulation (absolute strength) 3.992 1

Spectral centroid 3.352 3

Spectral irregularity 3.070 4

Number of zeros 2.505 1

Relative onset time by partial frequency 1.615 2

Centroid modulation (relative strength) 1.541 1

Individual harmonic modulation 
(relative strength)

1.385 4

Tremolo (relative strength) 1.042 1

“Rise likelihood” by frequency and 
post-onset time

1.021 2

Average relative spectrum by harmonic number 1.008 1

TABLE 6. Features with  values greater than one, given the current context at Step two.
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At Step three, only two features remain salient (and their discriminating powe
somewhat reduced). Likelihood values for the three categories are computed
based on the features (weighted by the  values). French horn has the sm
likelihood value, and it is ruled out, thereby ruling out the brass category as w

5.5.4 Step four

At the beginning of Step four, the current context consists of the violin and v
groups, as shown in Figure 41. None of the features have  values greater
one (the largest is 0.267, see Table 8), highlighting the difficulty of discrimina
ing a violin from a viola based on only one isolated tone. The system compu
the likelihood values for the two categories (weighted by the  values). Vio
has the smaller likelihood and is ruled out. The sample is correctly classified
violin.

FIGURE 41. The current context at the beginning of Step four. The categories under 
consideration are Violin and Viola (shown in italics).

Feature Average 
Number of 

measurements 
chosen

Spectral irregularity 1.993 4

Spectral centroid 1.320 1

TABLE 7. Features with  values greater than one, given the current context at Step three.
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Feature Average 
Number of 

measurements 
chosen

Tremolo (relative strength) 0.267 1

Individual harmonic modulation 
(relative strength)

0.200 4

Centroid modulation (relative strength) 0.177 1

Spectral irregularity 0.169 4

Individual harmonic modulation 
(absolute strength)

0.161 4

Spectral centroid 0.155 1

Number of zeros 0.134 1

TABLE 8. Features with the largest values of , given the current context at Step four.
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Chapters 4 and 5 presented the components of a sound-source recognition s
tailored to the recognition of solo monophonic orchestral musical instruments
this chapter, the system is tested on a variety of classification tasks, and its p
formance is juxtaposed with that of human listeners and of other artificial sys
tems.

The chapter has six sections. First, the sets of recordings used to train the re
nition system and to test both the system and human experimental subjects 
described. Second a human listening experiment designed to evaluate huma
abilities at recognizing musical instruments is described. The next three sec
describe three experiments that test the recognition system under various co
tions. Finally, the results are related to previous research in musical instrume
recognition by both humans and machines.

6.1 A database of solo orchestral instrument recordings

Recordings for use during the evaluation process were obtained from three 
sources: a commercial sample library, a number of commercial compact disc
and a small set of recordings made especially for this project. An effort was m
to collect solo recordings of the 27 orchestral instruments in Table 9. Whene
possible, multiple, independent recordings of performances by different artis
were gathered. In all, more than 1500 isolated tones and more than 2 ½ hou
musical performance were assembled. All recordings were re-sampled to 32
using professional-quality software before presentation to either human or 
machine.
117
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The first source of recordings was the McGill University Master Samples 
(MUMS) collection (Opolko & Wapnick, 1987). The collection consists of a 
series of chromatic scales performed on a variety of musical instruments (ov
most of their playing ranges) by professional musicians in a recording studio
According to the producers, careful attention was paid to making recordings 
were “maximally representative” of the various instruments. For the studies p
sented in this chapter, a subset of the collection was used, consisting of chro
scales by the instruments shown in Table 10.

The second source of recordings was the MIT Music Library’s compact disc 
lection (and a test CD produced by the European Broadcast Union). As is ev
from Table 11, which details the number of independent recordings and tota
duration of the samples acquired for each instrument, it was much easier to 
solo recordings of some instruments than others. The recording quality varie
greatly from sample to sample, ranging from recordings made in modern stu
to decades-old recordings made in highly reverberant concert halls with high
els of ambient noise. 

To augment the collection of recordings described above, several student pe
formers were hired from within the MIT community. Samples were recorded 
directly to DAT (at 48 kHz) in a converted studio control room, using a high-
quality cardioid microphone placed approximately 1 meter in front of the per
former. These recordings are also catalogued in Table 11.
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TABLE 9. The 27 orchestral instruments considered in this study.
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Instrument Notes

Violin 4 scales: bowed w/vibrato, muted, martele, pizzicato

Viola (see violin)

Cello (see violin)

Bass (see violin)

Flute 2 scales: normal and flutter-tongued

Alto flute 1 scale

Piccolo 2 scales: normal and flutter-tongued

Oboe 1 scale

English horn 1 scale

Bassoon 1 scale

Contrabassoon 1 scale

B-flat clarinet 1 scale

E-flat clarinet 1 scale

Bass clarinet 1 scale

Soprano saxophone 1 scale (partial range only)

Alto saxophone 1 scale (partial range only)

Tenor saxophone 1 scale (partial range only)

Baritone saxophone 1 scale (partial range only)

C trumpet 2 scales: normal, and with harmon mute (stem out)

Bach trumpet 1 scale

French horn 2 scales: normal and (hand) muted

Alto trombone 1 scale

Tenor trombone 2 scales: normal and (straight) muted

Bass trombone 1 scale

Tuba 1 scale

TABLE 10. Description of the MUMS samples (isolated tones) used in this study. Each 
sample consists of a chromatic scale performed by a professional musician in a 
recording studio.
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Instrument Total 
duration

Number of 
performers

(professional/
student)

Notes

Alto trombone 300 s 1/0

Bassoon 406 s 2/1 39 s (authentic/period instrument); 
14 s; 353 s

Bass clarinet 9 s 1/0

B-flat/A clarinet 1242 s 5/1 323 s; 139s; 300 s; 300 s; 15 s; 165 s

Cello 627 s 2/1 128 s; 33 s; 466 s

Double bass 31 s 1/0

English horn 190 s 2/0 181 s; 9 s

Euphonium 688 s 0/1

Flute 2147 s 7/1 669 s; 439 s; 35 s; 31 s; 300 s; 300 s; 
19 s; 354 s

French horn 382 s 2/1 250 s; 115 s; 17 s

Oboe 460 s 2/1 53 s (authentic/period instrument);  
21 s; 386 s

Piccolo 7 s 1/0

Saxophone (type not known) 14 s 1/0

Soprano saxophone 183 s 1/0

C Trumpet 454 s 2/2 64 s; 13 s; 224 s; 153 s

Tenor trombone 299 s 2/0 289 s; 10 s

Tuba 19 s 1/0

Viola 452 s 3/1 55 s; 200 s; 24 s; 173 s

Violin 1451 s 5/1 572 s; 9 s; 300 s; 129 s; 30 s; 501 s

TABLE 11. Description of the recordings assembled from compact discs and from student 
performers. The student recordings were made in the control room of a recording 
studio (a space with very little reverberation); the professional recordings vary 
greatly in the levels of ambient reverberation and noise. Source material ranged 
from classical repertoire to 20th century art music and jazz.
120 A database of solo orchestral instrument recordings
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6.2 Testing human abilities

Although the experiments described in Section 3.1 reveal some of the quirks
qualities of human instrument-recognition abilities, none of them employed a
wide range of natural stimuli. Only Kendall (1986) used melodic phrases, and
stimuli were played on only three different instruments, each from a different
family. The results cited from the isolated-tone studies are difficult to interpret
part because of variations in experimental procedure (e.g., free-response ve
forced-choice) and range of stimuli. In order to fairly compare the performan
of an artificial system with that of human listeners, it is necessary to test hum
subjects with experimental protocols equivalent to those used to test the artif
system.

6.2.1 Experimental method

This section describes the method used in an experiment designed to test th
ity of expert human listeners to recognize musical instruments. The experim
was divided into two components. Like nearly all of the previous musical inst
ment recognition experiments, the first component employed single isolated 
musical tones as stimuli. The second component employed more ecologicall
evant stimuli consisting of ten second fragments of solo musical performanc

Fourteen human subjects participated in the experiment. Each had substant
previous exposure to the instruments of the orchestra. At the time of the exp
ment, subjects 1-9 were currently practicing an orchestral instrument or perf
ing with orchestral ensembles (subjects 8 and 9 were vocalists). Subjects 10
had previously played in orchestras, but not in the last five years. Subjects 1
had never played in an orchestra but had substantial experience listening to 
orchestral music. Subject 14 had never performed in an orchestra but had e
sive experience as a recording engineer for professional orchestras.

The experimental sessions were automated using a computer program writt
especially for this task. The program presented the trials comprising each pa
lar session in random order and recorded the subject’s responses in a data f
Stimuli were played back from compact discs (over headphones) under the c
trol of the program. Each experimental session took place in a quiet room, fr
from interruption.

Every subject participated in two sessions, lasting approximately 30 minutes
each. The first session tested the subjects’ classification abilities with isolate
tones, the second with ten second segments of solo performance taken from
mercial recordings or specially recorded for this experiment. Each session w
divided into separate trials, with one recording (a tone or a solo segment) te
on each trial (137 isolated tones and 102 solo segments were tested). On ea
trial, the subject had the opportunity to listen to the test stimulus as many time
desired. The subject was subsequently required to choose a response from 
of 27 instrument names (reproduced in Table 9 on page 118). Each subject 
informed that stimuli might not be evenly distributed among the 27 categorie
and that he or she should use their best judgment on each trial individually ra
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than attempt to distribute responses uniformly. Prior to participation, each sub
confirmed having prior exposure to each of the 27 instruments in the respon
list.

The recordings used in the first experiment were taken from the McGill Unive
sity Master Samples collection (Opolko & Wapnick, 1987). Tones at ten differ
pitches were used, and the set of instruments varied from pitch to pitch (in la
part because playing range varies from instrument to instrument, but also du
quirks of the available set of recordings). The collection of pitches and instru
ments is summarized in Table 12.

The recordings used in the second experiment were of eclectic origin, as 
described in Section 6.1. An attempt was made to present multiple recording
each instrument, as played by different performers. It was difficult, however, 
find examples of some instruments (or to find local performers willing to be 
recorded), so the number of recordings (and the number of independent per
ers) varies by instrument. In almost all cases, two recordings were used per 
former. If a particular recording was longer than ten seconds, only the first te
second segment was played for the subjects. Typically, the segment contain
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of tones Instruments
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TABLE 12. List of isolated tones used in the first experiment, arranged by pitch.
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melodic phrase, often taken from the cadenza of a concerto; a few segment
sisted of major-triad arpeggios. All segments were intended to be typical of a
musical style commonly performed on the particular instrument. Table 10 su
marizes the number and sources of recordings used in the listening experim

Of the 27 instruments in the response list, eight instruments were absent alt
gether from the stimulus sets of both experiments (alto flute, E-flat clarinet, c
trabassoon, cornet, fluegel horn, bass trombone, tenor saxophone1, and baritone 
saxophone). Bass clarinet, alto trombone, euphonium, soprano saxophone, 

Instrument
Total

number of 
samples

Number of
professional 
performers

Number of 
student 

performers

���� �
������ 0 / 5

�������  0 /

���� ���
���� / / 5

������ ���
���� /2 1 /

�����  0 /

������ ���� 0 / 5

������� ��
� ! 0 5

��
������ 0 5 /

����� /1 # /

�
���� ��
�  0 /

����  0 /

������� / / 5

����
���� '6, 0 / 5

��

��� ����
���� 0 / 5

	
��
�� & 0 0

	���
 �
������ ! 0 5

	��� 0 / 5

����� & 2 /

������ /0 1 /

TABLE 13. Summary of the stimuli used in the second experiment.

1.  Two of the samples, which came from a collection of short solo passages, were la
only “saxophone.” I judged them to most likely have been played on an alto saxophone, 
and that was arbitrarily deemed to be the correct response. It turns out that 50% o
subjects judged it to be a tenor saxophone, and only 28.6% responded alto. Neither 
interpretation changes the overall results significantly.
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alto saxophone were also absent from the isolated tone stimulus set used in
first experiment.

6.2.2 Results

A confusion matrix for the isolated tone stimuli, pooled across all subjects, is
shown in Table 8. Table 16 summarizes the results by family. Pooling across
subjects in the isolated-tone condition, the exact instrument was selected on
45.9% of trials, and an instrument from the correct family on 91.7% of trials (
subject would score 3.7% and 20.2% on these statistics by guessing random
In this condition, a within-family error is 5.5 times more likely to occur than a
between-family error. All of these results are strongly significant. For the full 
confusion matrix, pooled across all subjects,  (
values for individual subjects were all strongly significant using this test). Co
lapsed across instrument families (still pooled across all subjects), 

 (again, each individual subject result was strongly
significant).

Six of the subjects were not able to reliably distinguish double-reed instrume
from clarinets in the isolated tone condition.  tests using only trials on whic
double-reed or clarinet instrument was presented or responded were insignif
for subjects 4, 7, 9, 11, 13, 14. Results for the other subjects ranged from si
cance levels of  to .

A confusion matrix for the ten-second excerpt stimuli, pooled across all subje
is shown in Table 15. Table 17 summarizes the results by family. Pooling acr
all subjects in the ten-second excerpt condition, the exact instrument was sel
on 66.9% of trials, and an instrument from the correct family on 96.9% of tria
(a subject would score 3.7% and 18.1% on these statistics by guessing ran-
domly). In this condition, a within-family error is 9.7 times more likely to occu
than a between-family error. All of these results are strongly significant. For t
full confusion matrix, pooled across all subjects, 
(  values for individual subjects were all strongly significant using this test)
Collapsed across instrument families (still pooled across all subjects), 

 (again, each individual subject result was strongly
significant).

In the ten-second excerpt condition, only one subject (#13) could not reliably
tinguish double-reed instruments from clarinets.  tests for all other subjec
were significant at the ( ) level, except for subject #14 
( ).

A summary of the results from both conditions is shown in Figure 42, along w
results for a hypothetical “random guesser.” Performance pooled across all s
jects is summarized in Table 18. Table 19 illustrates the overall performance
each individual instrument in the two conditions.

χ2 13 26,( ) 8837 p 0.001«,= χ2

χ2 4 5,( ) 5334 p 0.001«,=

χ2

p 0.05< p 0.001<

χ2 18 26,( ) 13236 p 0.001«,=
χ2

χ2 5 5,( ) 6477 p 0.001«,=

χ2

p 0.001<
χ2 1 1,( ) 8.6 p 0.005<,=
124 Testing human abilities



TA
B

LE
 1

4.
C

on
fu

si
on

 m
at

ri
x 

fo
r 

th
e 

is
ol

at
ed

 to
ne

 c
om

po
ne

nt
 o

f t
he

 e
xp

er
im

en
t. 

E
nt

rie
s 

ar
e 

ex
pr

es
se

d 
as

 
pe

rc
en

ta
ge

s.
 T

he
 d

as
he

d 
bo

xe
s 

in
di

ca
te

 w
ith

in
-f

am
ily

 c
on

fu
si

on
s.

V
io

lin

V
io

la

C
el

lo

D
. b

as
s

F
lu

te

P
ic

co
lo

O
bo

e

E
. h

or
n

B
as

so
on

B
-f

la
t C

la
r.

Tr
um

pe
t

Fr
. h

or
n

Te
n.

 tr
om

b.

Tu
ba

To
ta

ls

47
.6

40
.8 9.
8

6.
6

1.
0

3.
6

0.
8

1.
4

12
.8

33
.3

36
.7

13
.9

11
.5 1.
2

0.
7

11
.3

13
.5

20
.4

50
.4

40
.7

14
.7

1.
5

24
.8

39
.6 4.
3

7.
5

0.
4

63
.3

57
.1 2.
4

4.
6

0.
4

0.
5

22
.4 4.
8

1.
2

1.
4

Violin

Viola

Cello

Double bass

Flute

Alto flute

Piccolo

Oboe

English horn

Bassoon

Contrabassoon

B-flat clarinet

E-flat clarinet

Bass clarinet

Trumpet

Cornet

Fluegel horn

French horn

Alto trombone

Tenor trombone

Bass trombone

Euphonium

Tuba

Soprano saxophone

Alto saxophone

Tenor saxophone

Baritone saxophone

0.
4

12
.2

38
.1 2.
4

1.
6

56
.0

35
.7 3.
6

11
.9 1.
2

2.
1

4.
4

0.
8

8.
3

46
.4 7.
1

0.
4

0.
7

7.
9

1.
4

2.
8

1.
0

11
.9 5.
4

42
.9 3.
2

1.
4

3.
9

0.
8

3.
6

1.
8

9.
5

1.
2

0.
9

0.
4

9.
5

2.
4

0.
4

0.
7

0.
5

5.
4

42
.9 1.
2

0.
7

10
.0 4.
3

2.
4

0.
4

0.
5

42
.9 0.
7

8.
6

1.
0

0.
4

1.
2

69
.8

15
.7 3.
6

10
.7

0.
5

1.
8

1.
2

13
.9 2.
1

5.
7

1.
4

2.
6

0.
4

1.
2

2.
4

2.
0

7.
1

8.
6

8.
6

1.
9

1.
8

2.
4

35
.7

29
.3

38
.6 6.
5

1.
8

7.
9

4.
3

0.
9

1.
8

1.
2

22
.1

17
.9

11
.4 3.
5

1.
8

3.
6

4.
3

2.
9

0.
7

1.
8

0.
4

0.
7

10
.0 0.
5

0.
5

5.
4

1.
4

7.
1

0.
6

0.
8

2.
4

3.
6

2.
0

0.
6

0.
8

3.
6

1.
8

3.
6

7.
1

0.
4

0.
7

0.
4

1.
8

3.
6

0.
4

0.
7

2.
9

0.
5

0.
4

1.
2

0.
4

1.
4

0.
2

Pre
se

nt
ed

Res
po

nd
ed



TA
B

LE
 1

5.
C

on
fu

si
on

 m
at

ri
x 

fo
r 

th
e 

te
n-

se
co

nd
 e

xc
er

pt
 c

om
po

ne
nt

 o
f t

he
 e

xp
er

im
en

t. 
E

nt
rie

s 
ar

e 
ex

pr
es

se
d 

as
 

pe
rc

en
ta

ge
s.

 T
he

 d
as

he
d 

bo
xe

s 
in

di
ca

te
 w

ith
in

-f
am

ily
 c

on
fu

si
on

s.

V
io

lin

V
io

la

C
el

lo

D
. b

as
s

F
lu

te

P
ic

co
lo

O
bo

e

E
. h

or
n

B
as

so
on

B
-f

la
t C

la
r.

B
as

s 
C

la
r.

Tr
um

pe
t

Fr
. h

or
n

A
lt.

 T
ro

m
b.

Te
n.

 tr
om

b.

E
up

ho
n.

Tu
ba

S
op

. S
ax

.

A
lto

 S
ax

.

To
ta

ls

69
.6

27
.7 2.
4

1.
8

0.
5

10
.6

28
.0

48
.2 6.
0

7.
4

2.
4

23
.2

78
.6 3.
6

6.
8

0.
9

13
.1

92
.9 0.
5

2.
7

81
.4

35
.7

12
.3

14
.3 2.
1

Violin

Viola

Cello

Double bass

Flute

Alto flute

Piccolo

Oboe

English horn

Bassoon

Contrabassoon

B-flat clarinet

E-flat clarinet

Bass clarinet

Trumpet

Cornet

Fluegel horn

French horn

Alto trombone

Tenor trombone

Bass trombone

Euphonium

Tuba

Soprano saxophone

Alto saxophone

Tenor saxophone

Baritone saxophone

3.
3

64
.3 1.
1

73
.8

46
.4 1.
2

1.
1

6.
4

14
.3

33
.9 7.
1

1.
2

3.
6

3.
6

2.
8

0.
5

4.
8

5.
4

73
.6 7.
1

0.
9

10
.1

3.
6

1.
8

1.
2

16
.5

14
.3 2.
6

1.
8

2.
4

4.
9

64
.3 1.
5

7.
1

78
.6 2.
7

14
.3 5.
4

4.
8

0.
3

76
.8 3.
6

7.
1

3.
6

6.
5

2.
4

18
.8 1.
2

7.
1

1.
8

1.
9

2.
7

4.
8

17
.9

10
.7

17
.9 3.
6

1.
7

0.
9

73
.8

39
.3

30
.4

14
.3 3.
6

3.
6

6.
8

4.
8

14
.3 3.
6

0.
7

3.
6

10
.7

50
.0

14
.3 2.
7

1.
2

4.
8

3.
6

7.
1

0.
6

2.
4

42
.9

14
.3 1.
3

3.
6

3.
6

75
.0 1.
6

1.
2

0.
5

7.
1

3.
6

0.
4

42
.9

28
.6 1.
4

1.
8

2.
4

46
.4

50
.0 2.
1

1.
2

3.
6

10
.7 0.
4

C
on

fu
si

on
 m

at
rix

 fo
r 

th
e 

te
n-

se
co

nd
 e

xc
er

pt
da

ta
, c

om
pi

le
d 

ac
ro

ss
 a

ll 
su

bj
ec

ts

Pre
se

nt
ed

Res
po

nd
ed



TABLE 16. Family confusion matrix for the isolated tone component of the experiment. 
Entries are expressed as percentages.

TABLE 17. Family confusion matrix for the 10-second phrase component of the experiment. 
Entries are expressed as percentages.
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FIGURE 42. Performance by subject on the two components of the experiment. Separate 
results are shown for identification of the correct instrument, and of the correct 
family group.

Isolated tone
Condition

Ten second 
segment
Condition

% Exact responses !1".   ".

% correct family ./"# . ".

1"1 ."#

TABLE 18. Summary of human performance in the two conditions, pooled across all subjects.

P within-family error( )
P between-family error( )
----------------------------------------------------
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Instrument

Ranking
in isolated 

tone 
condition10-second

excerpts
Isolated

tones

Flute 79.5 49.6 [2]

Trumpet 72.3 62.6 [1]

B-flat clarinet 70.0 47.2 [3]

Tuba 70.0 6.6 [14]

Bassoon 69.5 30.8 [8]

Double bass 63.4 28.4 [9]

Violin 57.6 31.8 [6]

Cello 57.4 32.4 [5]

Oboe 54.9 38.5 [4]

French horn 52.1 23.3 [11]

Piccolo 42.9 28.1 [10]

Tenor trombone 42.4 13.7 [13]

Euphonium 35.3 - -

Bass clarinet 34.6 - -

Viola 32.9 21.2 [12]

English horn 24.7 31.3 [7]

Alto saxophone 20.0 - -

Alto trombone 11.8 - -

Soprano saxophone 6.5 - -

TABLE 19. “Recognizability” scores by instrument, calculated as the number of trials in which 
the instrument was correctly identified divided by the total number of trials in which 
the instrument appeared as either a stimulus or a response. Instruments are 
sorted by their rank in the ten-second excerpt condition.

Si Ri∩
Si Ri∪

--------------------- 100×
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6.2.3 Discussion

There are several statistics from this experiment that can be compared to pre
studies, including correct-response rate and within- and between-family con
sion rates. Pooling across all subjects in the isolated-tone condition, the exa
instrument was selected on 45.9% of trials, and the correct family on 91.7% 
trials (a random guesser would score 3.7% and 20.2% on these statistics). I
condition, a within-family error is 5.5 times more likely to occur than a betwe
family error. Success rates from previous studies include 35-57% exact answ
on a free-response task (Eagleson & Eagleson, 1947), 85% on an 8-way for
choice task (Strong & Clark, 1967), and 59% on a 10-way forced-choice tas
(Berger, 1964). Strong’s subjects identified the correct family on 94% of trial
(thus, within-family confusions were 1.5 times more likely than between-fam
confusions). Berger’s subjects identified the correct family 88% of the time 
(within-family confusions were 2.4 times more likely than between-family con
fusions). 

Pooling across all subjects in the ten-second-exceprt condition, subjects 
responded with the exact instrument on 66.9% of trials, and with the correct 
ily on 96.9% of trials (a random guesser would score 3.7% and 18.1% on th
statistics). In this condition, a within-family error is 9.7 times more likely to 
occur than a between-family error, rather strongly highlighting the perceptua
salience of the instrument families. 

Previous studies suggest that certain small groups within families are particu
difficult to distinguish. Within the string family, for example, Robertson (1961
reported common confusions between violin and viola, and between cello an
double bass. The confusion matrices from both components of the current e
iment (Tables 8 and 15) exhibit a strong diagonal band, with each string inst
ment commonly confused with its neighbors in size. Confusions occurred 
particularly often between violin and viola. Viola samples were also very ofte
classified as cello, although the converse does not hold.

Robertson (1961) also reported frequent confusions between instruments of
brass family, particularly between instruments of similar size. Saldanha and 
Corso (1964) reported common confusions of trumpet with cornet, saxophon
(not a member of the brass family!), and French horn; and trombone with Fre
horn, saxophone, and trumpet. Berger (1964) reported common confusions 
between trumpet and cornet; and French horn, baritone, and trombone. Sch
berg (1960) reported confusions between trombone and trumpet; and French
and trombone. In the ten-second-excerpt data, brass instruments were comm
confused. Trumpet samples were classified correctly on 76.8% of all trials, b
were confused with cornet (18.8%), fluegel horn (2.7%), French horn (0.9%)
and clarinet (0.9%). Tuba samples were classified correctly on 75.0% of tria
but were confused with Euphonium (14.3%), bass trombone (7.1%), and Fre
horn (3.1%). Euphonium samples were classified correctly on 42.9% of trials
and were confused with fluegel horn (17.9%), French horn (14.3%), tenor tro
bone (14.3%), bass trombone (3.6%), tuba (3.6%), and English horn (3.6%)
These statistics do not suggest particularly salient subgroups, but it is intere
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to note that across all trials, most mistaken classifications were as French ho
but French horn was misclassified relatively infrequently.

Within the double-reed family, frequent confusions between oboe and Englis
horn were reported by Robertson (1961) and Saldanha and Corso (1964). T
data from this experiment support the oboe-English horn confusion pair, thou
oboe was selected much more often than English horn. Subjects 13 and 14 
accounted for nearly all (21) of the confusions of the double-reed instrument
with the clarinets (subjects 11 and 7 contributed made three such confusion
other subjects made any).

The clarinet family did not exhibit any strong subgroups, except possibly 
between B-flat and E-flat clarinet. The E-flat clarinet is used much less fre-
quently than the other clarinets in performances, and no recordings of it wer
used in this study. Similarly, the flute family did not exhibit strong subgroups,
except possibly between flute and alto flute. Again, however, no recordings of
alto flute were used, and only one piccolo recording was available, so no str
conclusions can be drawn. So few recordings of saxophones were used in th
study that analysis of confusions is impossible.

Several previous studies indicated that some instruments are easier to recog
than others, but such effects appear to depend rather strongly on the details 
experiment. For example, Eagleson and Eagleson (1947) found that violin an
trumpet were easiest to identify in a free-response task, and that alto-horn, p
colo, and flute were the most difficult. It is likely, however, that the violin scor
was elevated because it is the most well-known string instrument and no oth
strings were used as stimuli. Trumpet is similarly well known, and alto horn (
relatively rare instrument) was the only other brass instrument used in the st
Piccolo and flute may have been confused with each other, leading to poor id
fication scores. 

Saldanha and Corso (1964) found that B-flat clarinet, oboe, and flute tones w
most easily classified, and that violin, cello, and bassoon tones were most d
cult. Their study, however, did not include English horn or piccolo tones, whi
may have elevated the oboe and flute scores respectively. The fundamental 
quencies they tested were very high in the bassoon playing range (and relat
high in the cello playing range as well), possibly contributing to its low score.

Berger (1964) found that oboe tones were easiest to classify, and that flute a
trumpet tones were most difficult. His study, however, included no double-ree
other than oboe, thereby elevating its score, but several brass instruments, in
ing the cornet, which is easily confused with trumpet. 

The correct-classification scores for the instruments used in the current stud
shown in Table 19 on page 129, sorted in decreasing order based on the ten
ond-excerpt portion of the data. Scores for the isolated-tone data are shown
alongside. Flute, trumpet, and B-flat clarinet scored well in both conditions. 
Viola and tenor trombone scored poorly in both conditions.
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A final point of comparison with previous studies is the relative performance 
individual subjects. Figure 42 on page 128 shows the performance of each s
ject on the two conditions, with separate scores for identifications with and w
out toleration of within-family confusions. Only one subject (#4) was a 
professional musician; the others were university graduate and undergradua
students. Interestingly, subject #1, who scored highest on the isolated-tone c
fication task, is the only subject with “perfect pitch”. In a post-experiment inte
view, he admitted to using rather exact knowledge of the pitch-ranges of the
various instruments to improve his judgments, particularly in the isolated-ton
condition.

6.3 Computer experiment #1: Isolated tone pilot study 1

While the recognition architecture described in Chapters 4 and 5 was under 
development, a short pilot study was conducted to test some of the feature-e
tion techniques described in Chapter 4 and to evaluate their usefulness for r
nizing the sources of isolated musical tones. 1023 tones were selected from
MUMS collection, covering the full pitch ranges of fourteen instruments (viol
viola, cello, bass, flute, piccolo, B-flat clarinet, oboe, English horn, bassoon, 
trumpet, trombone, French horn, and tuba) playing several different articulat
styles (e.g., pizzicato, bowed, muted).

For this study, 31 one-dimensional features were computed from the weft re
sentation of each instrument tone. These included the pitch, spectral centroi
attack asynchrony (both the relative onset times of partials at different freque
cies, and their overall variation), ratio of odd-to-even harmonic energy (base
the first six partials), and the strength of vibrato and tremolo. Many of the 31
tures were subtle variations of other features included in the set, measured i
slightly different manner. The feature set was intended to be representative o
features described in Chapter 3 but certainly not exhaustive. For example, th
shape of the spectral envelope was not considered at all in this study. Table 2
contains a list of the features that were extracted.

Several instrument-class taxonomies were constructed and various pattern-r
nition techniques were used to build statistical classifiers at each node. Statis
classifiers require a set of training data whose size grows exponentially with
number of feature dimensions, and with 31 features, the necessary data set 
much larger than what was available. To reduce the training requirements, F
multiple discriminant analysis (McLachlan, 1992) was employed at each nod
the taxonomy. The Fisher technique projects the high-dimensional feature sp
into a space of fewer dimensions (the number of dimensions is one fewer tha
number of data classes at the node) where the classes to be discriminated a
maximally separated. The analysis yields the mean feature vector and covar

1.  The results of this study were reported in (Martin & Kim, 1998). This section is a c
densed version of the paper written for that conference. The statistical classifiers w
implemented and tested by Youngmoo Kim.
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matrix (in the reduced space) of a single normal density for each class, which
be used to form maximum a posteriori (MAP) classifiers by introducing prior 
probabilities. The taxonomy that resulted in the best overall classification pe
mance (of those that were tested—the search was not exhaustive) is shown
Figure 43. Figures 44 and 45 show the decision spaces found at two of the n
of the taxonomy.

Average pitch over steady state Tremolo frequency

Average pitch ∆ ratioa

a. The ∆ ratio is the ratio of the feature value during the transition period from onset to steady state (~100
ms) to the feature value after the transition period.

Tremolo strength

Pitch variance Tremolo heuristic strengthb

Pitch variance ∆ ratioa Spectral centroid modulation frequency (Hz)

Average spectral centroid (Hz) Spectral centroid modulation strength

Spectral centroid ∆ ratioa Spectral centroid modulation heuristic strengthb

b. The heuristic strength of a feature is the peak height from the DFT divided by the average value surroun
ing the peak.

Variance of spectral centroid Normalized spectral centroid modulation frequency (Hz)

Spectral centroid variance ∆ ratioa Normalized spectral centroid modulation strength

Average normalized spectral centroid Normalized spectral centroid modulation heuristic strengthb

Normalized spectral centroid ∆ ratioa Slope of the onset harmonic skewc

c. The onset harmonic skew is a linear fit to the onset times of the harmonic partials (defined as time the p
tial reached an energy level 3 dB below the steady-state value) as a function of frequency.

Variance of normalized spectral centroid Intercept of the onset harmonic skewc

Normalized spectral centroid variance ∆ ratioa Variance of the onset harmonic skewc

Maximum slope of onset (dB/msec) Post-onset slope of amplitude decay

Onset duration (msec)

Vibrato frequency (Hz) Odd/even harmonic ratio

Vibrato amplitude

Vibrato heuristic strengthb

TABLE 20. List of features extracted from each tone in the pilot study.
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FIGURE 43. Taxonomy used in the pilot study. Instrument family groups are shown in italics. 
The leaf nodes are the individual instrument classes.

FIGURE 44. Fisher projection for the Pizzicato vs. Sustained node of the taxonomy. Since 
there are two classes, the projection is one-dimensional. There are “modes” in the 
projection: the one on the left-hand side corresponds to Pizzicato tones; the one 
on the right to Sustained tones. The Sustained tone distribution is favored by prior 
probability and therefore appears larger. The axes are not labeled; the abscissa is 
a linear combination of the 31 features.
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FIGURE 45. Fisher projection for classifying the individual string instruments. There are four 
classes and thus three dimensions in the projection. Violin data points are plotted 
with X’s, viola with O’s, cello with plus symbols and double bass with squares. The 
axes are not labeled. Each axis is a linear combination of the 31 features.

In addition to the Fisher projection technique, two varieties of k-nearest neighbor 
(k-NN) classifiers were tested. A k-NN classifier works by memorizing the fea-
ture vectors of all of the training samples. When a new sample is to be class
the system finds the k nearest training samples in the feature space (usually us
a Euclidean distance metric), and the new sample is classified by majority ru
based on the labels of the k training samples.

To evaluate the performance of the various classifiers, each was trained with
of the MUMS tones, leaving 30% as independent test samples. Table 21 con
a summary of the classification performance of the hierarchical Fisher classi
a hierarchical k-NN classifier, and a non-hierarchical k-NN classifier. The results 
are averaged over 200 test runs with different training/test data splits. The hi
chical Fisher classifier performs best, particularly at the individual instrumen
level.
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Although Fisher and k-NN techniques yield successful classifiers, they provide
little insight into the relative importance of the various individual features. It 
would be valuable to know if particular features are good at characterizing pa
ular instruments or families. To that end, a step-forward algorithm was used 
find the best features for isolating each instrument family. A step-forward alg
rithm works by testing each feature individually and choosing the best as thecur-
rent set. The algorithm continues by testing all combinations of the current se
with each of the remaining features, adding the best of these to the current se
repeating. For computational simplicity, only k-NN classifiers were used in this 
part of the study. This procedure was followed using three different 70%/30%
splits of the training/test data, iterating 10 times to find the 10-feature combin
tion that provided the best average performance over the three different data

By using only the 10 best features at each node, the system’s success rate f
instrument family identification increased to 93%. Some of the features were
generally salient across many of the instrument families, and some were par
larly useful in distinguishing single families. The most common features selec
for each subgroup are listed in Table 22.

Vibrato strength and features related to the onset harmonic skew (roughly, th
ative onset times of the various partials) were selected in four of the five inst
ment subgroups, indicating their relevance across a wide range of isolated 
instrument tones. One interesting omission occurs with the clarinet group. On
the 31 features was the ratio of odd to even harmonic energy. The conventio
wisdom about the clarinet is that its odd partials are much stronger than its e
partials, but this is not true over the clarinet’s entire range, and this study did
find it to be a very useful feature.

This pilot study has two results worth noting. First, it demonstrates the utility o
hierarchical organization of sound sources, at least for the limited range of 
sources it considered. Second, it demonstrates that the acoustic properties s
gested by the musical acoustics and analysis-by-synthesis literature (see Ch
3) are indeed useful features for musical instrument recognition.

Level of taxonomy
Hierarchical Methods

Non-hierarchical
k-NNFisher + MAP k-NN

Pizzicato vs. sustained 98.8% 97.9% 97.9%

Instrument family 85.3% 79.0% 86.9%

Individual instruments 71.6% 67.5% 61.3%

TABLE 21. Classification results for the three classifiers tested. Each result was cross-
validated with 200 test runs using 70%/30% splits of the training/test data.
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Not surprisingly, the hierarchical classifier performs better than humans on t
classification task. It is unfair, however, to compare its performance directly w
the results from Section 6.2.1 The classifier has learned to identify the instru-
ments from the MUMS collection with great success, but it is not in any way 
demonstration of performer-independent generalization. Because of the part
lar form of cross-validation used in this study, on any given trial the compute
had been trained with tones produced by the same performer. The human lis
ers did not enjoy the same advantage. The next two sections address this lim
tion of the pilot study.

Subgroup Selected features

Strings

Vibrato strength

Onset harmonic skew

Average spectral centroid

Brass

Vibrato strength

Variance of spectral centroid

Onset harmonic skew

Clarinets

Pitch variance

Onset duration

Vibrato strength

Onset harmonic skew

Flutes

Pitch

Onset duration

Tremolo strength

Spectral centroid

Vibrato frequency

Double reeds

Vibrato strength

Average spectral centroid

Spectral centroid modulation

Onset harmonic skew

TABLE 22. Features that were particularly useful in distinguishing single instrument families.

1. Although the comparison is unfair, to save you the trouble of looking up the result,
human subjects averaged 45.9% exact identifications (91.7% allowing within-famil
confusions). The computer program scored better on exact classifications, but not 
as well on determining the family. It should also be noted that the stimulus set was
the same in the two experiments, though there was substantial overlap.
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6.4 Computer experiment #2: 6- to 8-way classification

Although the isolated-tone pilot study showed that the features used by the s
tem enabled good classification results on isolated-tone stimuli, two troubles
aspects of the study make it difficult to draw any strong conclusions from it. T
address these issues, a second experiment was performed using more reali
stimuli and more principled cross-validation.

Of the 27 instruments considered in the human experiment, recordings of m
than three independent performers were available for only five: violin, viola, 
trumpet, B-flat clarinet, and flute (bassoon, cello, French horn, and oboe eac
had three; each of the others had fewer). Three sub-experiments were cond
with subsets of this list, using 6, 7, and 8 instruments respectively. Violin, vio
cello, trumpet, B-flat clarinet, and flute were used in the first sub-experiment.
The second sub-experiment added French horn, and the third added oboe (
soon was omitted because the available recordings of two of the performers 
very short).

In each sub-experiment, the stimuli from the human experiment correspondin
the selected instruments were used to test the system. For each trial, the com
system was trained with all of the recordings available for those instruments
except those by the particular performer being tested. This form of leave-one-out 
cross-validation makes good use of the available training data, yet still provid
fair test because on every trial the system was not trained on any recordings
the performer playing on the sample being tested.

Because the number of classes in each sub-experiment was so small, the sy
was configured to use a flat hierarchy (i.e., there was only one decision node
each instrument formed a leaf node). With the flat hierarchy, beam search is
meaningless, so it was not used. Four variations of context-dependent featu
selection (see Section 5.3.1 on page 107) were tested: (1) no salience weigh
average salience score based on the classes currently under consideration, 
salience based only on reliability estimates, and (4) the product of (2) and (3
all cases, the “rule-one out” extension (see Section 5.3.2 on page 109) was 

Table 23 shows the main results of the experiment, organized by the numbe
instrument classes tested and by the form of context-dependent feature sele
In each sub-experiment, the best configuration employed average feature-
salience scores based on the current set of classes under consideration (ca
The worst-performing configuration in each sub-experiment used salience 
weights based only on reliability estimates (case 3). Unsurprisingly, performa
improves as the number of instrument classes decreases.

Tables 24-26 show the confusion matrices for the best-performing configura
in each sub-experiment. Like the human subjects, the computer system tend
confuse violin with viola, and viola with cello. Other mistakes are consistent 
across the three sub-experiments but do not bear obvious relationships to th
takes made by the subjects in the human experiment. They may be due to q
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of the particular feature-extraction algorithms, but are probably just due to an
insufficient feature set or insufficient training data.

TABLE 24. Confusion matrix for the 8-way classification experiment. Results are reported as 
percentages. The classifier answered correctly on 73.0% of trials (83.8% allowing 
within-family confusions).

Condition

No
Salience
Weights

(1)

Salience 
weights based 

on current
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(2)

Salience weights 
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confidence 
ratings
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TABLE 23. Results of computer experiment #2. In all cases, performance was best in the 
second salience-weight configuration, which chooses feature subsets based on 
their ability to discriminate among the particular sound-source classes under 
consideration. In each box the percentage of exact responses is given (along with 
the percentage of correct responses if within-family confusions are tolerated).
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TABLE 25. Confusion matrix for the 7-way classification experiment. Results are reported as 
percentages. The classifier answered correctly on 77.9% of trials (89.7% allowing 
within-family confusions).

TABLE 26. Confusion matrix for the 6-way classification experiment. Results are reported as 
percentages. The classifier answered correctly on 82.3% of trials (95.2% allowing 
within-family confusions).
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6.5 Computer experiment #3: Direct comparison to 
human abilities

A final experiment was performed to enable a more direct comparison betwe
human abilities (based on the experiment described in Section 6.2) and the 
ties of the recognition system. The full stimulus set used in the human exper
ment was employed to test the system. As with Computer experiment #2, on 
trial the computer system was trained with all of the available recordings—ex
those by the particular performer being tested. This form of leave-one-out cross-
validation makes good use of the available training data, yet still provides a f
test because on every trial the system is guaranteed to have never heard an
formances by the musician playing on the recording being tested.

The system was configured to use the taxonomy shown in Figure 46, which 
includes an instrument-family layer based on the discussion in Chapter 3. Th
best-performing configuration from Computer experiment #2 was employed,
using salience weights based on the average discriminating power of each fe
for the particular categories being considered at any time. In all cases, the “r
one-out” extension was used. Three values were tested for the beam-width 
parameter (1, 3, and infinite).

Table 21 shows the main results of the experiment, organized by beam width
by experiment component. With a beam width of 3 or greater, the computer s
tem performs better than subjects 9, 11, and 13 on the ten-second excerpt c
nent. With an infinite beam width, the system performed better than subject 1
the isolated-tone component. All of the human subjects, however, scored mu
better than the computer system if within-family confusions are tolerated. Ta
28 and 29 show the computer system’s confusion matrices for the two condit

Experimental
condition

Beam Width

1 3 Infinite

9������* ����� 20"08 ' ."28, 20".8 '#0"28, 2&"#8 '#1".8,

	��������* ���
�
�� !/"08 '12".8, 11".8 '#5" 8, 1 ".8 '#!"18,

TABLE 27. Percentage of correct classifications for the computer recognition system 
configured to use the taxonomy shown in Figure 46, with beam searches of 
various widths. Values in parentheses indicate performance if within-family 
confusions are allowed.
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FIGURE 46. Taxonomy used in Computer experiment #3 to test the recognition system.
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6.6 General discussion

Although the human experiment described in Section 6.2 and Computer exp
ment #3 (described in Section 6.5) afford the most direct comparison betwee
human and computer performance on musical instrument classification tasks
comparison is still not completely fair. As described in Chapter 2, there are s
eral criteria that must be kept in mind when making such comparisons. Cons
ing each in turn:

• Do the computer system and humans exhibit the same level of generali-
zation? No. The computer system described here demonstrates the mos
general performer-independent recognition of musical instruments of an
system described to date. However, the tests used to demonstrate this a
were limited, and it is not possible to make strong claims about generaliz
tion. It is very interesting to note that the human listeners who participate
the experiment made particular kinds of mistakes that suggest that they 
succeeded in generalizing abstract groups of instruments—namely the 
instrument families. The computer system did not exhibit this particular g
eralization.

• Do the computer system and humans handle real-world complexity 
equivalently?  No. Both the computer system described here and the hum
experimental subjects exhibit robust classification performance with typic
commercial music recordings, which include reverberation (and, occasio
ally, high levels of ambient noise). With the possible exception of the sys
tems described by Brown (1998a; 1999) and Marques (1999), the comp
system described here is much more robust in this regard than any othe
tem described to date. However, although it was not tested, complexity a
ing from mixtures of sounds would surely cripple the computer system. I
speculate that the performance of human subjects would degrade some
but would be much more robust than that of the computer system with th
particular kind of complexity.

• Are the computer system and humans “equivalently scalable”? No. 
Humans are capable of recognizing examples from a vastly larger set of
sound sources. The computer system described here could be extended
much larger range of sound-source classes, but doing so would require 
addition of many more feature extractors and quite a lot more training da
The taxonomic recognition structure is intended to make the system mo
scalable than previous systems, but this aspect has not been adequatel
tested. Judging by the system’s classification performance in Computer 
experiment #3, the representations of the instrument families would have
be improved significantly to make the classifier robust with the narrow wid
beam-search technique.

• Do both systems exhibit equivalently graceful degradation? No. The 
computer system was designed to make good decisions based on whate
evidence is available, and its performance does degrade smoothly as pa
lar features are removed from consideration, but it has not been tested u
conditions similar to those that would be caused by masking in normal li
tening situations. Again, human abilities are much more robust.
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• Do both systems exhibit a flexible learning strategy? No. The computer 
system requires a supervised framework in order to learn to recognize so
sources. Humans can also learn without explicit instruction (though not f
this particular forced-choice task). 

• Do both systems operate in real-time? No. The computer system operates
two to three orders of magnitude more slowly than “real” time. This is due
large part to the exploratory nature of this work, but a better criticism is t
the recognition architecture does not provide any means for refining its d
sions over time.

Although human listeners satisfy the foregoing criteria more thoroughly than
computer model, it is worthwhile to compare human and machine performanc
light of these differences. Figure 47 summarizes the published performance
for experiments using isolated tones as stimuli. The first four entries represe
human performance, and as should be expected, human performance decre
somewhat as the number of categories in a forced-choice task increases. Th
results from the 27-way forced-choice task described in Section 6.2 are app
mately equal to performance observed by Eagleson and Eagleson (1947) in
free-response task.

The other five entries in the figure show the results from tests of computer re
nition systems. Again, as the number of classes increases, the performance
ens. However, the results reported by Bourne (1972), Kaminskyj & Materka 
(1995), Fujinaga (1998), and Computer experiment #1 (Section 6.3) are not 
estimates of the systems’ performance with truly independent test stimuli. In
these four experiments, the systems had exposure during training to perfor-
mances by the same musicians (in the same acoustic environment) who per
formed the test samples. This critical failure of the experimental protocol 
probably elevates the reported performance levels significantly. Only Compu
experiment #3 (Section 6.5) used a fair test of performance; the results can 
fairly be compared to the human 27-way forced-choice task (again, keeping 
mind differences in the satisfaction of the performance criteria).

Figure 48 makes a similar comparison between experiments that used real m
as stimuli. Again, the trend for both humans and computer systems is that pe
mance suffers as the number of classes in the forced-choice task increases.
listening experiment described in Section 6.2 is the first to test human listene
with stimuli consisting of real music from a wide variety of musical instrumen
All of the computer systems shown in the figure were tested fairly, with princ
pled cross-validation techniques equivalent to those used in Computer expe
ment #3. The most direct comparison between human and computer is the h
27-way forced-choice task and Computer experiment #3 (a 25-way forced-ch
task). On average, the human listeners scored somewhat higher than the com
model, as described in Section 6.5.

Of the computer systems shown in the figure, the most direct comparison ca
made between Marques’s (1999) 8-way classifier and the 8-way classifier fro
Computer experiment #2 (Section 6.4). Although the reported performance le
146 General discussion



FIGURE 47. Comparison of human and computer abilities on isolated-tone recognition tasks. 
The open bars indicate the percentage of correct responses on the task; the filled 
bars indicate the level achieved by uniform random guessing. Human results are 
shown for Strong’s (1967) 8-way forced choice experiment, Berger’s (1964) 10-
way forced choice experiment, Eagleson & Eagleson’s (1947) free-response task 
(with tones from nine instruments as stimuli), and the human experiment 
discussed in Section 6.2. Computer results are shown for Bourne’s (1972) 3-way 
classifier, Kaminskyj & Materka’s (1995) 4-way classifier, Fujinaga’s (1998) 23-
way classifier, and Computer experiments #1 and #3 from Sections 6.3 and 6.5. 
Of the computer systems, only Computer experiment #3 employed performer-
independent cross-validation.
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FIGURE 48. Comparison of human and computer abilities on recognition tasks using realistic 
musical signals. The open bars indicate the percentage of correct responses on 
the task; the filled bars indicate the level achieved by uniform random guessing. 
Human results are shown for Kendall’s (1986) 3-way forced choice experiment 
and the human experiment discussed in Section 6.2. Computer results are shown 
for Brown’s (1999) 2-way classifier, Brown’s (1998) 4-way classifier, Marques’s 
(1999) 8-way classifier (9-way, actually, but only 8 choices were instruments; the 
grey bar shows the performance level when non-commercial recordings were 
added to the stimulus set), and Computer experiments #2 and #3 from Sections 
6.4 and 6.5.
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of the two systems appear to be similar, the classifer tested in Section 6.4 ap
to have generalized more thoroughly than Marques’s classifier. Marques repo
performance level of 71.6% for professionally recorded music (from compac
discs). After introducing “non-professional” recordings (a subset of the stude
recordings described in Section 6.1) to the test set, the system’s performanc
dropped to 44.6%. This suggests that the classifier has not generalized as well as 
the classifer tested in Section 6.4, which scored 73.0% with both professiona
“non-professional” recordings as test data. I speculate that this difference is 
to the different feature sets used by the two classifiers. Both Marques and Br
use MFCC coefficients as features. These capture short-term properties of t
spectrum, but do not represent temporal properties of the sound, such as att
transients or vibrato. The failure of the MFCC-based computer system to ge
alize from obervations of these features may be related to the sensitivity of 
human talker recognition systems—which often use the same feature set—t
variations in channel conditions (Reynolds, 1995).
General discussion 149



150 General discussion



������� � Summary and conclusions
e rec-
e per-
r, I 
 

from 

tion, 

bout 
ob-
ious 

lis-
d by 

x-
l to 
ional 

s-
ial 
man 
f 
Chapters 4-6 described the implementation and evaluation of a sound-sourc
ognition system, based on the theory presented in Chapter 1 and on extensiv
ceptual analysis and modeling described in Chapters 2 and 3. In this chapte
will take a step back and consider how well the original goals of the research
have been met and what implications the work has for the fields of research 
which it draws.

7.1 Summary

I began this dissertation by outlining a broad theory of sound-source recogni
considered from the standpoint of the question “what is recognition for?” I 
described sound-source recognition as a process of gathering information a
an object in the listener’s environment so as to enable the listener to infer un
served properties of the object. The ability to detect predators or prey has obv
evolutionary significance, but sound-source recognition can also enable the 
tener to subconsciously infer the properties of sounds that are partially maske
other sounds, and this kind of inference may be the key to understanding mi
tures of sounds. From this perspective, sound-source recognition is essentia
the hearing process, but it is absent from the current generation of computat
auditory scene analysis models.

In Chapter 2, I presented a list of desiderata for sound-source recognition sy
tems. In light of these, I compared the abilities of the state-of-the-art in artific
recognition systems to those of humans. The general conclusion was that hu
listeners are much better able to recognize examples from general classes o
151
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sound sources than are the current generation of artificial systems. This is ha
surprising, but it suggests that there may be aspects of human perception th
could be modeled more closely in order to improve the performance of artific
systems.

In Chapter 3, I restricted attention to the class of orchestral musical instrume
Human abilities for recognizing musical instruments were reviewed, and aco
cal and perceptual research was scoured for insight into the acoustic proper
most likely to account for human recognition abilities in this limited domain. M
conclusion was that the most significant acoustic properties are related to th
excitation and resonance structures of the musical instruments. The chapter
cluded with a summary list of properties both likely to be useful during the rec
nition process and known to be perceivable by human listeners.

In Chapters 4 and 5, I described a musical instrument recognition system ba
on the insights gained from the previous chapters. In Chapter 4, I described 
series of representational transformations, beginning with the acoustic wave
and resulting in an abstract model (based on perceptually salient acoustic fe
tures) of the sound source’s excitation and resonance structure. The represe
tions were functionally matched to current models of information processing
the human auditory system. In Chapter 5, I presented an improvisational cla
cation framework for sound-source recognition based on the theory outlined
Chapter 1 and using the representational scheme from Chapter 4. The frame
is the result of an attempt to satisfy many of the criteria outlined in Chapter 2,
is sufficiently general to be used with many sound-source classes in addition
the musical instruments considered here.

In Chapter 6, I tested the recognition model on a battery of classification tas
and compared its performance to that of human listeners on similar tasks. 
Although, the human subjects in the experiments performed better overall th
the computer program, the computer model performed better than at least o
musically-skilled human subject in each test condition and at least as well (a
with improved generalization) as other computer systems that have been tes
on similar tasks. Many aspects of this performance are of interest. For exam
the same model configuration performed well with both isolated-tones and re
music as test stimuli. The context-dependent feature selection extension ena
the model to choose appropriate features for different contexts—attack featu
for isolated tones, vibrato features whenever available, and spectral features
whole-phrase stimuli—without explicit instruction (indeed, the two kinds of 
stimuli were never distinguished during training). The model’s success on th
variety of stimuli is unprecedented, and these results suggest that the appro
has considerable merit for musical-instrument recognition and considerable 
potential for sound-source recognition in general.
152 Summary
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7.2 Future developments

It goes without saying that there are many ways in which the work presented
could be extended or improved. Not all of the goals set out at the beginning 
this undertaking have been met, and many portions of the implementation w
developed only far enough to see how the system as a whole might behave. 
of the possibilities for future development of the work include:

• Integration with a CASA framework.  The system described here was pu
posely based on the representations used in Ellis’s PDCASA architectur
(Ellis, 1996), which I view as the most promising line of current research
computational auditory scene analysis. As was described in Chapter 1, 
sound-source recognition is only useful insofar as it allows the perceiver
infer properties of the sound source. Ellis’s micro-taxonomy of noise clou
transient, and quasi-periodic tonal elements is an example of the way re
nition can be used at a very low level to improve the interpretation of mix
tures of sounds. By extending the taxonomy to include more elaborate 
sound-source models such as those discussed here, CASA systems ma
someday be better equipped to understand more complicated mixtures. 
integration will by no means be a trivial step. 

• Addition of multiple, overlapping taxonomies. The system described here
employs a single taxonomy as its knowledge base. In contrast, the organ
tion of knowledge in the human brain is much more complicated. Perhap
many different taxonomies are superposed over the same set of object 
classes, organizing them according to different principles. It is not at all 
obvious how a recognition system based on multiple, overlapping taxono
mies might operate. Perhaps one or another is selected according to the
lem at hand. Or perhaps one taxonomy might be chosen in a given situa
because of the particular feature set that is available. Perhaps taxonomi
structures are too rigid altogether—other, more general models could be
based on spreading activation (Maes, 1989) or something like Hofstadte
Slip Net (Hofstadter, 1995).

• Integrating more general learning techniques. When I began this work, 
my goal was to build a system that would not require explicit training. I en
sioned a system that could listen to real music performances and determ
for itself what features were important and what the relevant classes of 
sounds are. Over time, I gradually whittled this vision down to the system
presented in the preceding chapters. There are, however, many interest
ways that machine learning techniques could be applied to the problem 
sound-source recognition. For example, it would be interesting to have t
system form its own taxonomy rather than have one specified in advanc
Perhaps Bobick’s techniques for evaluating the usefulness of particular c
gorizations (Bobick, 1987) could be spun into a method for generating a
refining taxonomies, or maybe other statistical clustering techniques cou
be used. Perhaps the system could start with a few supervised training e
ples, build preliminary representations, and then refine them by trying to 
ognize unlabeled sounds in an unsupervised framework. Another interes
direction is multi-modal integration. In particular, there may be ways in 
Future developments 153
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which visual and auditory object recognition systems could help each oth
learn more robustly and quickly than either could do on its own.

• Extending the knowledge base to include other kinds of sound sources. 
In Chapter 3, I concluded that musical instruments must be recognized o
the basis of features arising from the excitation and resonance structure
the instruments. This may also be true of a much wider range of sound 
sources. For example, vowels in human speech appear to be identified o
basis of vocal-tract resonances, or formants (e.g., Peterson & Barney, 1952).
Also, the distinction between “bouncing” and “breaking” events appears 
be due in large part to the excitation structure of the events—in particula
their temporal properties (Warren & Verbrugge, 1984). Many of the featu
used in the system presented here could be useful for recognizing the so
of pitched sounds in addition to the orchestral instruments (one promisin
set of possibilities is animal vocalizations).  Of course, in order to extend
work to other kinds of sound sources, new features would have to be ad
to the system’s repertoire. Happily, the conceptual division of the sound 
source into excitation and resonance is a useful tool for guiding the sear
for new features, and the architecture described here is sufficiently flexib
for new features to be added as they are discovered.

• Using model alignment to improve early decisions. In the visual object 
recognition literature, model alignment is an obvious and important aspec
the recognition process (e.g., Ullman, 1996). In order to compare local f
tures of a model to sensory data, there must first be a stage of rough pos
ing or alignment to determine the correspondence of portions of the 
perceptual data to parts of the model. It is not as obvious that such a ste
important in audition, but I believe that classification at upper (more 
abstract) levels of a taxonomy could be improved greatly by some form 
model alignment. Consider, for example, the brass and string families, fo
which each instrument is—to a first approximation—a scaled version of 
single prototype. The changes in scale from one instrument to another s
many feature properties—including the spectral centroid, pitch range, an
cutoff frequencies—uniformly. By taking these shifts into account, abstra
prototypes could become much better predictors of unobserved features
high-level classifiers could be made much more robust, thereby alleviatin
the need for techniques like beam search. In addition, this could enable 
system’s performance to become more like that of expert human listene
who rarely confuse instruments from different families.

• Taking advantage of inheritance. One of the most important conceptual 
strengths of frame-based semantic networks (Minsky, 1974) is that slots
some frames can inherit default values from other frames. Within a taxon
omy, the inheritance structure is obvious: a node’s slots inherit default va
from the node’s ancestors unless they are overridden by evidence from 
ing data. This style of inheritance is related to the statistical technique 
termed shrinkage, which has been used to advantage in text-document cla
fication tasks (McCallum et al., 1998), and to deleted interpolation, which 
has been used in speech recognition systems (Jelinek & Mercer, 1980).
basic idea is that, instead of using a single probability model for each fea
154 Future developments
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based only on training data applicable to a particular node of the hierarc
the system forms a mixture model based on the probability models at the 
node and all of its ancestors. The intuitive reason for using this kind of te
nique is that it improves estimates of probability-model parameters that 
would otherwise be uncertain due to limited amounts of training data. 
Empirical results show that the technique improves classifier performanc
with the biggest improvement occurring when training data is sparse 
(McCallum et al., 1998).

• Considering “cognitive” cues. Many of the features experienced listeners
use to recognize sound sources are not related directly to the acoustics 
sound production. High-level contextual cues, such as the particular piec
music being played, can be used to zero in on the particular instrument b
heard. Similarly, particular phrasing styles (e.g., portamento in bowed str
or vocal performance) can be emblematic of particular instrument classe
performers. As another example, human speakers may have characteris
speaking rhythms or pitch contours. There are so many possibilities that
small systems like the one described in this dissertation may never be ab
compete with humans on recognition tasks using real-world sounds. Sys
may require vast degrees of experience (equivalent to years of listening
and orders of magnitude more feature detectors and memory—to comp
directly with human listeners.

• Using multiple prototypes for each sound-source category. The classifi-
cation system described in this dissertation employed a single prototype
each sound-source category, and an obvious extension is to use multiple
totypes, particularly for the categories that vary the most from instance t
instance. Systems that take this approach will need to carefully balance
additional processing requirements against the degree of improved perfo
mance that the approach may provide.

• Constructing better feature-salience estimates. Because the set of sound 
sources explored in this dissertation was relatively small, the extensions
the basic classification architecture proposed in Section 5.3 were not ad
quately explored. The results of Computer experiments #2 and #3 (Sect
6.4 and 6.5) suggest that feature selection based on local estimates of d
criminating power do improve performance, but the ad hoc estimates of 
measurement reliability did not help. This is not to say, however, that rel
ability estimates are not a promising avenue for future research, but only
the issues involved are subtle and worthy of more extensive investigation

• Improving the feature detectors (and adding additional features). It 
should be obvious from the presentation in Chapter 4 that many of the si
processing techniques used to extract features from the correlogram rep
sentation were invented in an ad hoc manner. Many could be made more 
robust by more thorough analysis of the properties of the signals being a
lyzed, or by more principled statistical approaches. In addition, the repert
of feature detectors could of course be expanded to include more of the
range known to be important to human perception. In particular, I believe
that note-to-note transitions are the single most promising enexplored fe
ture for musical-instrument recognition. However, so little work has been
Future developments 155
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done to explore these features (see Strawn, 1985, 1986, 1987, for some
tial analyses), that it is difficult to know where to begin.

• Providing more training data. I had hoped that a good set of features 
would enable the recognition system to generalize from very little trainin
data, and it is conceivable that the right features could make this possibl
Although it would be interesting to see how the system’s performance wo
improve if more labeled examples were provided to it, I do not view this a
one of the more interesting paths to explore. At this stage, I believe that 
exploring a wider range of sound sources, another set of features, or alte
recognition algorithms could yield more insight than such a brute-force 
approach.

• Improving the system’s efficiency. The system’s current implementation is
painfully slow. The front end, which is implemented in C++, runs at abou
ten times real time on a desktop PC (mine is a 150 MHz Pentium). The 
ognition algorithm is implemented in MATLAB and is even slower. 
Although it would probably be possible to implement a real-time front en
with technology available today, I do not believe that it would be a usefu
exercise. Much more work has to be done to develop the recognition fra
work—particularly in regard to how the recognition process evolves over
time—before it would be worth attempting to build a real-time system.

7.3 Insights gained

In this dissertation, I have described a computer model based on portions of
new theory of sound-source recognition. Although many parts of the implem
tation were exploratory (and certainly sub-optimal), several key insights can 
gained from this work. For example:

• Serious consideration of psychoacoustics can lead to successful com-
puter perception systems. The recognition system described here was en
neered rather than “hill-climbed.” Instead of blindly applying a black-box
pattern-recognition technique to a fully general—but not interpretable—f
ture set (as is done by many purveyors of artificial neural network tech-
niques), I purposely discarded much of the information in the acoustic sig
based on evidence that it is not used by human listeners. The human sen
hearing is more robust than current machine systems, and we have muc
learn as engineers and as scientists by carefully studying human percep

• “Timbre” is useless as a scientific concept. There is no fixed set of param-
eters that determine what something “sounds like,” any more than there
for what something “looks like.” There are infinitely many ways to describ
objects in the world, and worrying about holistic concepts such as timbre
appearance is a waste of time.

• Introspection is misleading. Previous research in auditory perception—pa
ticularly in computational auditory scene analysis—has in general vastly
underestimated the ubiquitous nature of the perceptual illusions our brai
create. Our perceptual systems are incredibly robust, and we are consta
deluded into believing that we perceive more than is actually there to be
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cerned. When we “hear out” the guitar solo in a pop song, we do not do s
“separating out” the waveform generated by the guitar. We do it by subc
sciously making huge inferential leaps to fill in the perceptual gaps creat
by competing sounds. I rather strongly believe that the only reason our 
brains can fool us so well is that we are unknowingly making extensive u
of contextual information and background knowledge.

• Resynthesis is not a necessary component of a successful computer lis
tening system. It disturbs me greatly to see how much emphasis is placed
using computational auditory scene analysis systems to “extract” sounds
from mixtures and resynthesize them as isolated components. The hum
auditory system surely does not do this, so why should computer model
the human system? Even if the human auditory system could perform this 
task, what would be the point?—who would listen to the result? This is a
version of the homunculus paradox. The solution to the paradox in this case
is to realize that the system can only progress toward its goal—which is 
make sense of objects in the world and their interactions—by abstracting
away from the acoustic signal to a point where aspects of the sound can
related to prior experience. To be sure, we do not know exactly how this 
pens in the human brain, but what would be the point of re-representing
world at the same level of abstraction? My best guess is that abstract au
tory representations refer to the low-level sensory data for support of hyp
eses about mixtures of sounds; there is no need to separate their 
contributions explicitly, and there certainly is no need for resynthesis.

7.4 Conclusions

The theory of sound-source recognition outlined in Chapter 1 is necessarily 
vague and should probably be viewed mainly as a collection of constraints th
will need to be part of a more developed theory. There are many possible rec
tion systems that would be consistent with the general theory I have propose
the particular implementation described here is but one.

To my knowledge, this theory is the first of its kind. Many of its components c
be found in the computer vision and cognitive science literature, and parts o
are hinted at by Bregman’s Auditory Scene Analysis, but this particular assem-
blage of ideas is new to hearing science, and it is my hope that I have provid
viable jumping-off point for future research in this area. Our current scientific
understanding of perception is so limited that we do not even know all of the
right questions to ask of a perceptual theory. It is encouraging, however, tha
approach I have described has yielded such promising initial results. Sound-
source recognition remains a promising avenue for future research—one tha
eventually lead to a deeper understanding of audition in general. 
Conclusions 157
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