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ABSTRACT

Identifying a musical work from a melodic fragment is a task
that most people are able to accomplish with relative ease. For
some time now researchers have worked to give computers
this ability as well, as it would be the cornerstone of any
query-by-humming system. To accomplish this, it i s
reasonable to study how humans are able to perform this task,
and to assess what features we use to determine melodic
similarity. Research has shown that melodic contour is an
important feature in determining melodic similarity, but it i s
also clear that rhythmic information is important as well. The
goal of this research is to explore what variation of contour
and rhythmic information can result in the most efficient,
robust, and scalable representation for melody. We intend for
this to be the basis of a query-by-humming system that will
be used to test the validity of our proposed representation.

1. INTRODUCTION

Identifying musical works is a skill that comes fairly easy to
humans. Often, when we turn on the radio in the middle of a
familiar song, we are able to identify it within a few seconds
(or even less). Development of this skill is taught in music
classes (the so-called drop-the-needle test). In this task, many
different features of the music beyond the notes themselves
are used such as lyrics, instrumentation and timbre, tempo,
and dynamics.

Perhaps what is more remarkable is that we can still
identify music without those additional features and even
without all of the notes; just using melody alone. Even in
cases where the melody is cut short, corrupted, or rendered
inaccurately we can often identify what song is being referred
to.

This task highlights several features of melody. Melody i s
an efficient construct. Just a few notes of a tune can fully
identify a piece of music. It is also a fairly robust feature,
resistant to corruption. Even when rendered inaccurately, a
melody can often be identified. It also scales easily to large
data sets. Becoming familiar with more songs generally does
not diminish our ability to identify ones we already know.
Thus, it is desirable for any mid- to high-level representation
for melody to also have these features (efficiency, robustness,
and scalability).

This research is based upon a contour representation for
melody that incorporates features of rhythm. This type of
representation quantizes the intervals between notes more

coarsely than traditional musical notation, suggesting only a
general type of movement from pitch to pitch. The most
common has been a 3-level (+/-/0) contour description scheme
that simply identifies the interval as going up, down, or
having no change from the previous pitch. Our proposed
representation is based on a 5-level contour, designed to be
used as the basis of a query-by-humming system. This
description scheme has been submitted as a proposal to the
MPEG-7 International Standard, which has the intention of
defining meta-data for multimedia content.

2. BACKGROUND

This section presents background material for the research
that follows in subsequent sections, particularly with regards
to important perceptual aspects of melody. A definition of
melody is given. Prior research into judgements of melodic
similarity is examined, and melody representations used in
existing music search and retrieval systems are also
discussed.

2.1. Melody as an auditory and musical construct

Defining what exactly is or is not a melody can be somewhat
arbitrary. Melodies can be monophonic, homophonic, or
contrapuntal. Sometimes what one person perceives to be the
melody is not what another perceives. A melody can be
pitched or purely rhythmic, such as a percussion riff. Our
research does not attempt to address all of these cases and i s
limited in scope to pitched, monophonic melodies.

Even with these limitations, arriving at a definition for
melody can be difficult. Levitin describes melody as Òan
auditory object that maintains its identity under certain
transformationsÉ along the six dimensions of pitch, tempo,
timbre, loudness, spatial location, and reverberant
environment; sometimes with changes in rhythm; but rarely
with changes in contourÓ [1]. Although rather broad, this
definition highlights several important features of melody.
People are able to recognize melodies even when they are
played on different instruments, at different volumes, and at
different tempi (within a reasonable range).

More importantly for our purposes, a melody can still be
uniquely identified after it has undergone transposition (we
still recognize a familiar tune in a different key as being the
same tune). For this reason, absolute pitch is not the best
descriptor for melodic pitch information. More important than
the absolute pitches are the relative intervals between
successive notes in a melody, since intervallic relations are
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also invariant to key transposition. Since contour information
is a subset of interval information, it is clear that contour i s
also invariant to transposition.

When identifying a melody, the listener perceives not
only the pitch/interval information in the melody, but how
those notes correspond to particular moments in time (i.e.
rhythm). Rhythm is one dimension in which melodies in
general can not be transformed. The following simple example
illustrates the importance of consistent rhythmic information
in melodic description.
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Figure 1: First four notes of the Bridal Chorus from
Lohengrin (Wagner), i.e. Here Comes the Bride.
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Figure 2: First four notes of O Tannenbaum.

It is apparent that these are two very distinct melodies, yet
the sounding pitches, intervals, and note durations are
identical. The difference lies not only in the respective meters
(time signatures) of the songs, but in the position of the notes
relative to the metric structure of each piece. The time
signature of the first example is 4/4, and the strong beats
occur on the first and third beats of a measure, which
correspond to the first and fourth notes of the piece. The
second example has a time signature of 3/4, and the strong
beat is on the first beat of the measure, corresponding to the
second note. From this example, we clearly see the advantages
of incorporating rhythmic information in a melodic
representation.

2.2. Systems for melodic similarity search and retrieval

Much work has been done in research and development of
search and retrieval systems for melodic similarity. Existing
systems use a variety of representations for melody, and
usually aim for flexibility in order to accommodate variations
in data and query format. Often, data is stored in a format
analogous to traditional musical notation, such as MIDI
[2][3][4][5]. However, some systems store contour
information only [6][7].

The data used in different systems of course varies greatly,
but consists primarily of classical and folksong repertoires,
since the copyright on most of these works has expired and
they are now in the public domain. The data is taken almost
exclusively from Western music, or at least music using the
Western tonal system (12 half-steps per octave). Again the
reasons for this are primarily practical, since MIDI and other
machine-based formats for storing notation were designed for
Western tuning, and there are neither standard formats nor
standardized methods of adapting existing formats for non-
Western  tuning.

Several of these database projects have implemented full
query-by-humming systems [2][6][7]. This includes

processing of an audio input signal in order to extract the
necessary query information. However, parsing an acoustic
signal to accurately and consistently produce note
segmentation and pitch, interval, or contour information is a
difficult task, which has been the focus of several papers
[2][6]. As a result, these systems sometimes require sung
queries to consist of discrete notes (separated by silence) [6],
to use particular syllables (such as ÔtaÕ or ÔdaÕ that are easy to
separate into individual notes) [2], or to use whistling
(instead of singing or humming) [7].

Most of these databases for melody search and retrieval
have implemented sophisticated search engines to determine
similarity and matches from a query. Systems that use only
basic (3-level) contour information are the simplest to
implement [5][6][7]. Other systems allow a variety of different
queries, such as exact interval or finer (>3-level) contour
information [2][3][4]. Rhythmic information is included in a
few of the databases [2][3][4], but is ignored in others
[5][6][7]. One of the query-by-humming systems only
attempts to identify the beginnings of melodies [2].

In general, relatively little has been done to align
machine-based melodic representations (for music databases)
with our knowledge of human perception of melody. We
believe that a mid/high-level perceptually-motivated
representation of melody will also result in a representation
that is more accurate and efficient for searching and similarity
matching. The representation proposed in this paper suggests
one possibility towards achieving that goal.

3. MELODY REPRESENTATION

In this section, we present our proposed representation for
melody. We first discuss the significance of melodic contour
and justify its use as the basis of our representation. This i s
followed by the specification of the notation and parameters
of our representation.

3.1. The importance of melodic contour

It is clear that some type of interval information is important
to representing melody, since melodic matching is invariant
to transposition. However, instead of representing each
interval exactly (e.g. ascending minor sixth, descending
perfect fourth, etc.), the literature suggests that a coarser
melodic contour description is more important to listeners in
determining melodic similarity [8]. Experiments have shown
that interval direction alone (i.e. the 3-level +/-/0 contour
representation) is an important element of melody recognition
[9]. As mentioned previously, several databases use this
representation alone.

One possible reason for the importance of melodic contour
is that this information is more easily processed and is at a
higher (more general) level than interval information. But as
one becomes more familiar with a melody and gains more
musical experience, the specific intervals have greater
perceptual significance [1].

There is, of course, anecdotal and experimental evidence
that humans use more than just interval direction (a 3-level
contour) in assessing melodic similarity. When recalling a
melody from memory, most of us (not all!) are able to present
information more precise than just interval direction. In an
experiment by Lindsay [10], subjects were asked to repeat
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(sing) a melody that was played for them. He found that while
there was some correlation between sung interval accuracy and
musical experience, even musically inexperienced subjects
were able to negotiate different interval sizes fairly
successfully. From a practical standpoint, a 3-level
representation will generally require longer queries to arrive
at a unique match. Given the perceptual and practical
considerations, we chose to explore finer (5- and 7-level)
contour divisions for our representation.

3.2. Proposed melody representation

We use a triple <T P B> to represent each melody, which we
will refer to as TPB representation. T is the time signature of
the song, which can change, but often does not. P is the pitch
contour vector, and B is the beat number vector. The range of
values of P will vary depending on the number of levels of
contour used, but will follow the pattern of 0, +, -, ++, --, +++,
etc. The first value of B is the location of the first note within
its measure in beats (according to the time signature).
Successive values of B are incremented according to the
number of beats between successive notes. Values of B are
quantized to the nearest whole beat. Clearly, the length of B
will be one greater than the length of P because of the initial
value.

Additionally, we use a vector Q to represent different
contour resolutions and quantization boundaries. The length
of Q indirectly reveals the number of levels of contour being
used, and the individual values of Q indicate the absolute
value of the quantization boundaries (in number of half-
steps). For example, QÊ=Ê[0Ê1] represents that we quantize
interval changes into three levels, 0 for no change, + for an
ascending interval (a boundary at one half-step or more), and -
for a descending interval. This representation is equivalent to
the popular +/-/0 or U/D/R (up/down/repeat) representation.
QÊ=Ê[0 1 3] represents a quantization of intervals into five
levels, 0 for no change, + for an ascending half-step or whole-
step (1 or 2 half-steps), ++ for ascending at least a minor third
(3 or more half-steps), - for a descending half-step or whole-
step, and -- for a descent of at least a minor third.

Thus, given a melody M and a resolution vector Q, we can
get a unique contour representation:

melody_tpb(M,Q)Ê=Ê<T P B>. (1)

4. EXPERIMENTAL RESULTS

In this section, we describe the results of three analyses aimed
at evaluating three features: the relative importance of
rhythmic information, an appropriate number of melodic
contour levels, and the appropriate quantization boundaries
for a given number of levels.

4.1. Data set

Thus far, we have assembled a data set of 50 multi-track MIDI
files, containing a mixture of popular and classical music. The
popular music selections span a variety of different countries.
All selected songs had a separate monophonic melody sound
track. A tool was written to find the melody track based on the

track name, extract the melody information and represent it for
each song in the following format:

nn # numerator of time signature
dd # denominator of time signature
ppqn # PPQN (i.e. ticks per quarter note)
n1 # midi note number of the first note in the melody
m1 # measure number of the first note in the melody
b1 # beat number of the first note in the melody
t1 # tick number of the first note in the melody
n2 # midi note number of the second note in the

melody
m2 # measure number of the second note in the

melody
b2 # beat number of the second note in the melody
t2 # tick number of the second note in the melody
É É

This data format was general enough to allow for a great deal
of flexibility in final representation. The data was converted
to the TPB representation in the following analyses.

4.2. Query Set

The query set was a randomly generated subset of the data set,
containing 10 different queries. Since the query length
(number of notes contained in the query) obviously affects
the performance of the search (how many songs are found to
match the query), we truncated each query into different
lengths for the various experiments.

4.3. Methods

We next describe the testing algorithms used in our analysis.

4.3.1. Algorithm 1: Efficiency testing

This algorithm is used to examine similarity performance with
different contour levels and quanitzation boundaries. It makes
use of the scoring algorithm, which is described in the
following section.

Procedure:
1. Select a finite set of K quantization vectors, Q = {Q1,

Q2, É, QK} to be tested.
2. Quantize the beats of the data set D.
3. Randomly generate the query set H from D.
4. Convert the data set D and query set H into our TPB

representation.
a. Compute values of P for each using quantization

vector Qk, where 1 ² k ² K.
b. Compute B using absolute beat number instead

of <measure beat tick> representation.
This results in converted data and query sets Dk and
Hk, respectively.

5. For each song dik (i=1, 2, É, N, where N is the number
of songs in data set Dk) and each query hjk (j=1, 2, É,
M, where M is the number of queries in query set Hk),
compute the score sijk (algorithm described below)
representing how well hjk matches dik, resulting in the
N´M score matrix Sk.

6. For each query hjk, count how many songs dik result
in a score sijk greater than or equal to that of hjk and
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the song it was originally generated from. This
results in the count vector, Ck=[cjk], (j=1, 2, É, M).

7. For the entire query set Hk, compute the overall
performance, i.e. how many songs will match a query
on average:

P
M

ck jk

j

M

=
=

∑1

1

(2)

8. Compare the results for different quantization vectors
Qk.

4.3.2. Algorithm 2: Scoring algorithm

This algorithm computes the score sij of a song diÊ=Ê<Ti Pi Bi>
and query hjÊ=Ê<Tj Pj Bj> to evaluate how well they match. A
higher score indicates a better match.

Procedure:
1. If  the numerator of Ti  Tj, then return 0.
2. Initialize the measure number, m = 1.
3. Align Pj with Pi from the mth measure of di.
4. Calculate the beat similarity score as follows:

a. For each beat, tally the number of matches
between the subsets of Pj and Pi that fall within
the current beat.

b. Divide this number by the length (number of
values) of the query subset that falls within the
current beat.

Thus, the maximum beat similarity score is 1. For
example, if the current beat of the song contains two
intervals and the query contains three, of which the
first two match the song intervals, the beat similarity
score would be 2/3.

5. Average the beat similarity scores over the total
number of beats in the query, resulting in the overall
similarity score starting at measure m: sij

m.
6. If m is not at the end of di, then m = m + 1 and repeat

step 3.
7. Return sij = max{sij

m}, the best overall similarity
score starting at a particular measure.

4.4. Results I: Importance of rhythmic information

In spite of anecdotal evidence (such as the examples from
Section 2.1), we wanted to explicitly verify the usefulness of
rhythmic information in comparing melodic similarity. To
test this, we used the simplest contour (3-levels, Q=[0 1]) for
queries with and without the rhythmic information vector, B.
Our results clearly indicate that rhythmic information allows
for much shorter (and thus more efficient) queries (Figure 3).
A fewer number of matches indicates better performance.

4.5. Results II: Comparison of different quantization
boundaries

We examined 3-, 5-, and 7-level contour representations. For
the 5- and 7-level contours, we also examined a variety of
quantization boundaries (different vectors Qk). The results, in
terms of average number of matches vs. query length (number
of notes) are presented below in Figures 4 through 6.
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Figure 3: Comparison of representations with or
without beat information. Both use 3 levels to
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Figure 4: Performance of 3-level contour.
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Figure 5: Performance of 5-level contour, with varying
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Figure 6: Performance of 7-level contour, with varying
quantization boundaries, Qk

It is clear that the performance of 5-level contours are
generally better than the 3-level contour, and 7-levels is better
than that. For quantization vectors, we limited our search to
QkÊ=Ê[0Ê1ÊxÊÉ] cases only. Other values would have caused
repeated notes (no interval change) to be grouped in the same
quantization level as some amount of interval change, which
does not make sense perceptually.

4.6. Discussion

It is an obvious result that greater numbers of levels in
general result in more efficient searches. Clearly, more levels
means more information, meaning less notes are needed to
converge to a unique solution. What is more illuminating, i s
that the best 5-level contour was able to equal the performance
of the 7-level contour. This suggests that a 5-level contour
may be an optimal tradeoff between efficiency and robustness
to query variation (more levels will cause more variations in
queries).

Given our results, it is especially revealing to look at the
histogram of interval occurrences in our data set.
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Figure 7: Interval distribution based on our data set.

From this histogram, it is clear why certain quantization
levels perform better than others. An optimal quantizer would
divide the histogram into sections of equal area. Thus, for a 5-
level contour we would like each level to contain 20% of the
data. This is approximately true for the QÊ=Ê[0 1 3] case, which

has the best performance. No interval change (0) occurs about
23% of the time. Ascending half-steps and whole-steps (+1
and +2) are about 21% of the intervals, whereas descending
half- and whole-steps (-1 and -2) represent approximately
23%. Other choices for quantization boundaries clearly have
less-optimal probability distributions, which is why they do
not perform as well.

While this result is dependant on the statistics of the data
set, it is worth noting that it also correlates well with our
knowledge of melody perception. Others have noted the
apparent correlation of statistical independence and
perceptual importance in acoustic features, which supports a
theory of perception evolving from statistical efficiency [11].
Perhaps it is not surprising that these relationships may exist
in higher-level features, such as melody, as well. Some surely
will argue the reverse causality: that human perception has
driven the statistics of melody, resulting in a distribution of
intervals that is pleasing to human perception. Either way, i t
is a useful relationship that perhaps has not yet been fully
exploited. The statistical features of this description for
melody result in an efficient representation. And since the
representation correlates well with our perception of melody,
the representation becomes more robust since our queries are
likely to be more accurate.

5. FUTURE DIRECTIONS

Our conclusions are based on a rather small set of data, and we
have not yet satisfied the third requirement stated at the
beginning of the paper: scalability. Clearly, enlarging the data
set to include a wider variety of musical works is a step
towards evaluating the scalability of our melody description.
We are continually adding new works to our database. It
would certainly be informative to run the same analysis on
other large melody databases. Validating these results for an
independent data set would certainly lend more weight to our
conclusions.

An interesting and informative experiment would be to
apply this type of analysis to non-Western music, to see if the
relationship between the statistical distribution of intervals
and the perception of melody is maintained. The results might
reveal a cultural bias in the distribution of intervals, or may
indicate some cross-cultural consistencies in melodic
perception.

Another direction would be to investigate the interval
relationships between more than two notes, i.e. comparing not
only a note with the previous note, but also to ones before
that.  A system which uses 2nd-order (3-note groups) matching
is implemented in [5].

This research is one piece of a query-by-humming
implementation. We hope to have the full system up and
running by Fall 2000.
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