
ISO/JTC 1/SC 29 WG 11 N2203SA
Date: 1998-05-15

ISO/IEC FCD 14496-3 Subpart 5

ISO/JTC 1/SC 29/WG11

Secretariat: Narumi Hirose

Information Technology - Coding of Audiovisual Objects –
Low Bitrate Coding of Multimedia Objects

Part 3: Audio

Subpart 5: Structured Audio

Document type: Final Committee Draft
Document:sub-type if applicable
Document:stage (20) Préparation
Document:language E

C:\WINDOWS\Profiles\eds\Desktop\SA FCD 980507.doc ISOSTD Basic Version 1.8 1996-10-
30

2 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

FCD 14496-3 Subpart 5

MPEG-4 Structured Audio

Editor:
Eric D. Scheirer, MIT Media Laboratory

eds@media.mit.edu

+1 617 253 0112
<http://sound.media.mit.edu/mpeg4>

5.0 INTRODUCTION ...9

5.0.1 Overview of subpart 9
5.0.1.1 Purpose 9
5.0.1.2 Introduction to major elements 9

5.0.2 Normative References... 9

5.0.3 Glossary of Terms ... 10

5.0.4 Description methods ... 15
5.0.4.1 Bitstream syntax 15
5.0.4.2 SAOL syntax 16
5.0.4.3 SASL Syntax 16

5.0.5 Bibliography.. 16

5.1 BITSTREAM SYNTAX AND SEMANTICS ..18

5.1.1 Introduction to bitstream syntax ... 18

5.1.2 Bitstream syntax.. 18

5.2 PROFILES...26

5.3 DECODING PROCESS...27

5.3.1 Introduction... 27

5.3.2 Decoder configuration header ... 27

5.3.3 Bitstream data and sound creation.. 27
5.3.3.1 Relationship with systems layer 27
5.3.3.2 Bitstream data elements 28
5.3.3.3 Scheduler semantics 28

5.3.4 Conformance ... 31

3 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4 SAOL SYNTAX AND SEMANTICS ...32

5.4.1 Relationship with bitstream syntax ... 32

5.4.2 Lexical elements 32
5.4.2.1 Concepts 33
5.4.2.2 Identifiers 33
5.4.2.3 Numbers 33
5.4.2.4 String constants 34
5.4.2.5 Comments 34
5.4.2.6 Whitespace 34

5.4.3 Variables and values ... 34

5.4.4 Orchestra ... 35

5.4.5 Global block... 35
5.4.5.1 Syntactic form 35
5.4.5.2 Global parameter 36
5.4.5.3 Global variable declaration 37
5.4.5.4 Route statement 39
5.4.5.5 Send statement 40
5.4.5.6 Sequence specification 41

5.4.6 Instrument definition.. 42
5.4.6.1 Syntactic form 42
5.4.6.2 Instrument name 43
5.4.6.3 Parameter fields 43
5.4.6.4 Preset and channel tags 43
5.4.6.5 Instrument variable declarations 44
5.4.6.6 Block of code statements 47
5.4.6.7 Expressions 55
5.4.6.8 Standard names 63

5.4.7 Opcode definition.. 67
5.4.7.1 Syntactic Form 67
5.4.7.2 Rate tag 67
5.4.7.3 Opcode name 68
5.4.7.4 Formal parameter list 68
5.4.7.5 Opcode variable declarations 69
5.4.7.6 Opcode statement block 69
5.4.7.7 Opcode rate 70

5.4.8 Template declaration .. 72
5.4.8.1 Syntactic form 72
5.4.8.2 Semantics 72
5.4.8.3 Template instrument definitions 73

5.4.9 Reserved words ... 74

5.5 SAOL CORE OPCODE DEFINITIONS AND SEMANTICS.......................75

5.5.1 Introduction... 75

4 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.2 Specialop type.. 75

5.5.3 List of core opcodes... 75

5.5.4 Math functions .. 76
5.5.4.1 Introduction 76
5.5.4.2 int 76
5.5.4.3 frac 77
5.5.4.4 dbamp 77
5.5.4.5 ampdb 77
5.5.4.6 abs 77
5.5.4.7 sgn 77
5.5.4.8 exp 77
5.5.4.9 log 78
5.5.4.10 sqrt 78
5.5.4.11 sin 78
5.5.4.12 cos 78
5.5.4.13 atan 78
5.5.4.14 pow 78
5.5.4.15 log10 79
5.5.4.16 asin 79
5.5.4.17 acos 79
5.5.4.18 ceil 79
5.5.4.19 floor 79
5.5.4.20 min 79
5.5.4.21 max 80

5.5.5 Pitch converters... 80
5.5.5.1 Introduction to pitch representations 80
5.5.5.2 gettune 80
5.5.5.3 settune 81
5.5.5.4 octpch 81
5.5.5.5 pchoct 81
5.5.5.6 cpspch 81
5.5.5.7 pchcps 82
5.5.5.8 cpsoct 82
5.5.5.9 octcps 82
5.5.5.10 midipch 83
5.5.5.11 pchmidi 83
5.5.5.12 midioct 83
5.5.5.13 octmidi 83
5.5.5.14 midicps 83
5.5.5.15 cpsmidi 84

5.5.6 Table operations.. 84
5.5.6.1 ftlen 84
5.5.6.2 ftloop 84
5.5.6.3 ftloopend 84
5.5.6.4 ftsr 84
5.5.6.5 ftbasecps 85
5.5.6.6 ftsetloop 85
5.5.6.7 ftsetend 85
5.5.6.8 ftsetbase 85
5.5.6.9 tableread 86
5.5.6.10 tablewrite 86

5 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.6.11 oscil 86
5.5.6.12 loscil 87
5.5.6.13 doscil 87
5.5.6.14 koscil 88

5.5.7 Signal generators... 88
5.5.7.1 kline 88
5.5.7.2 aline 89
5.5.7.3 kexpon 90
5.5.7.4 aexpon 90
5.5.7.5 kphasor 91
5.5.7.6 aphasor 91
5.5.7.7 pluck 92
5.5.7.8 buzz 92
5.5.7.9 fof93

5.5.8 Noise generators.. 93
5.5.8.1 Note on noise generators and pseudo-random sequences 93
5.5.8.2 irand 94
5.5.8.3 krand 94
5.5.8.4 arand 94
5.5.8.5 ilinrand 94
5.5.8.6 klinrand 95
5.5.8.7 alinrand 95
5.5.8.8 iexprand 95
5.5.8.9 kexprand 95
5.5.8.10 aexprand 95
5.5.8.11 kpoissonrand 96
5.5.8.12 apoissonrand 96
5.5.8.13 igaussrand 97
5.5.8.14 kgaussrand 97
5.5.8.15 agaussrand 97

5.5.9 Filters ... 98
5.5.9.1 port 98
5.5.9.2 hipass 98
5.5.9.3 lopass 98
5.5.9.4 bandpass 99
5.5.9.5 bandstop 99
5.5.9.6 biquad 100
5.5.9.7 allpass 100
5.5.9.8 comb 100
5.5.9.9 fir 101
5.5.9.10 iir 101
5.5.9.11 firt 102
5.5.9.12 iirt 102

5.5.10 Spectral analysis.. 103
5.5.10.1 fft 103
5.5.10.2 ifft 104

5.5.11 Gain control... 105
5.5.11.1 rms 105
5.5.11.2 gain 106
5.5.11.3 balance 107

6 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.11.4 compress 107
5.5.11.5 pcompress 107
5.5.11.6 sblock 108

5.5.12 Sample conversion .. 109
5.5.12.1 decimate 109
5.5.12.2 upsamp 109
5.5.12.3 downsamp 110
5.5.12.4 samphold 110

5.5.13 Delays ... 110
5.5.13.1 delay 110
5.5.13.2 delay1 111
5.5.13.3 fracdelay 111

5.5.14 Effects... 112
5.5.14.1 reverb 112
5.5.14.2 chorus 113
5.5.14.3 flange 113

5.6 SAOL CORE WAVETABLE GENERATORS ..114

5.6.1 Introduction.. 114

5.6.2 Sample.. 114

5.6.3 Data .. 115

5.6.4 Random.. 115

5.6.5 Step... 116

5.6.6 Lineseg ... 117

5.6.7 Expseg .. 117

5.6.8 Cubicseg... 118

5.6.9 Spline.. 118

5.6.10 Polynomial ... 119

5.6.11 Window.. 119

5.6.12 Harm .. 120

5.6.13 Harm_phase .. 120

5.6.14 Periodic .. 121

5.6.15 Buzz.. 121

5.6.16 Concat .. 121

7 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.6.17 Empty... 122

5.7 SASL SYNTAX AND SEMANTICS ...123

5.7.1 Introduction... 123

5.7.2 Syntactic Form .. 123

5.7.3 Instr line... 124

5.7.4 Control line.. 124

5.7.5 Tempo line ... 125

5.7.6 Table line ... 125

5.7.7 End line .. 126

5.8 SAOL/SASL TOKENISATION...127

5.8.1 Introduction... 127

5.8.2 SAOL tokenisation.. 127

5.8.3 SASL Tokenisation ... 128

5.9 SAMPLE BANK SYNTAX AND SEMANTICS...129

5.9.1 Introduction... 129

5.9.2 Elements of bitstream ... 129
5.9.2.1 RIFF Structure 129
5.9.2.2 The INFO-list Chunk 130
5.9.2.3 The sdta-list Chunk 133
5.9.2.4 The pdta-list Chunk 134

5.9.3 Enumerators.. 143
5.9.3.1 Generator Enumerators 143
5.9.3.2 Default Modulators 153
5.9.3.3 Precedence and Absolute and Relative values. 155

5.9.4 Parameters and Synthesis Model... 156
5.9.4.1 Synthesis Model 156
5.9.4.2 MIDI Functions 160
5.9.4.3 Parameter Units 161
5.9.4.4 The SASBF Generator Model 162
5.9.4.5 The SASBF Modulator Controller Model 163

5.9.5 Error Handling ... 163
5.9.5.1 Structural Errors 163
5.9.5.2 Unknown Chunks 163
5.9.5.3 Unknown Enumerators 163

8 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.5.4 Illegal Parameter Values 163
5.9.5.5 Out-of-range Values 164
5.9.5.6 Missing Required Parameter or Terminator 164
5.9.5.7 Illegal enumerator 164

5.9.6 Profile 2 (Sample Bank and MIDI decoding) ... 164
5.9.6.1 Stream information header 164
5.9.6.2 Bitstream data and sound creation 165
5.9.6.3 Conformance 165

5.9.7 Profile 4 (Sample Bank decoding in SAOL instruments) .. 165

5.9.8 Sample Bank Format Glossary .. 165

5.10 MIDI SEMANTICS ...172

5.10.1 Introduction... 172

5.10.2 Profile 1 decoding process .. 172

5.10.3 Mapping MIDI events into orchestra control... 172
5.10.3.1 Introduction 172
5.10.3.2 MIDI events 172
5.10.3.3 Standard MIDI Files 174
5.10.3.4 Default controller values 174

5.11 INPUT SOUNDS AND RELATIONSHIP WITH AUDIOBIFS...................175

5.11.1 Introduction... 175

5.11.2 Input sources and phaseGroup.. 175

5.11.3 The AudioFX node.. 176

5.11.4 Interactive 3-D spatial audio scenes .. 176

C.1 Introduction... 182

C.2 Lexical grammar for SAOL in lex ... 182

C.3 Syntactic grammar for SAOL in yacc ... 184

Introduction Overview of subpart Purpose

9 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.0 Introduction

5.0.1 Overview of subpart

5.0.1.1 Purpose
The Structured Audio decoder allows for the transmission and decoding of synthetic sound effects and
music using several techniques. Using Structured Audio, high-quality sound can be created at extremely
low bandwidth. Typical synthetic music may be coded in this format at bit rates ranging from 0 kbps (no
continuous cost) to 2 or 3 kbps for extremely subtle coding of expressive performance using multiple
instruments.

MPEG-4 does not standardise a particular set of synthesis methods, but a method for describing synthesis
methods. Any current or future sound-synthesis method may be described in the MPEG-4 Structured Audio
format.

5.0.1.2 Introduction to major elements
There are five major elements to the Structured Audio toolset:

1. The Structured Audio Orchestra Language, or SAOL. SAOL is a digital-signal processing
language which allows for the description of arbitrary synthesis and control algorithms as part
of the content bitstream. The syntax and semantics of SAOL are standardised here in a
normative fashion.

2. The Structured Audio Score Language, or SASL. SASL is a simple score and control
language which is used in certain profiles (see Subclause 5.2) to describe the manner in which
sound-generation algorithms described in SAOL are used to produce sound.

3. The Structured Audio Sample Bank Format, or SASBF. The Sample Bank format allows for
the transmission of banks of audio samples to be used in wavetable synthesis and the
description of simple processing algorithms to use with them.

4. A normative scheduler description. The scheduler is the supervisory run-time element of the
Structured Audio decoding process. It maps structural sound control, specified in SASL or
MIDI, to real-time events dispatched using the normative sound-generation algorithms.

5. Normative reference to the MIDI standards, standardised externally by the MIDI
Manufacturers Association. MIDI is an alternate means of structural control which can be
used in conjunction with or instead of SASL. Although less powerful and flexible than SASL,
MIDI support in this standard provides important backward-compatibility with existing
content and authoring tools.

5.0.2 Normative References

[MIDI] The Complete MIDI 1.0 Detailed Specification v. 96.2, (c) 1996 MIDI Manufacturers Association

Introduction Glossary of Terms Introduction to major elements

10 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.0.3 Glossary of Terms

Absolute time The time at which sound corresponding to a particular event is really created;
time in the real-world. Contrast score time.

Actual parameter The expression which, upon evaluation, is passed to an opcode as a parameter
value.

A-cycle See audio cycle.

A-rate See audio rate.

asig The lexical tag indicating an a-rate variable.

Audio cycle The sequence of processing which computes new values for all a-rate
expressions in a particular code block.

Audio rate The rate type associated with a variable, expression or statement which may
generate new values as often as the sampling rate.

Audio sample A short snippet or clip of digitally represented sound. Typically used in
wavetable synthesis.

Authoring In Structured Audio, the combined processes of creatively composing music
and sound control scripts, creating instruments which generate and alter sound,
and encoding the instruments, control scripts, and audio samples in MPEG-4
Structured Audio format.

Backus-Naur Format (BNF) A format for describing the syntax of programming languages, used here
to specify the SAOL and SASL syntax. See Subclause 5.0.4.2.

Bank A set of samples used together to define a particular sound or class of sounds
with wavetable synthesis.

Beat The unit in which score time is measured.

BNF See Backus-Naur Format.

Bus An area in memory which is used to pass the output of one instrument into the
input of another.

Context See state space.

Control An instruction used to describe how to use a particular synthesis method to
produce sound.

EXAMPLES

“Using the piano instrument, play middle C at medium volume for 2 seconds.”
“Glissando the violin instrument up to middle C.”
“Turn off the reverberation for 8 seconds.”

Control cycle The sequence of processing which computes new values for all control-rate
expressions in a particular code block.

Introduction Glossary of Terms Introduction to major elements

11 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Control period The length of time (typically measured in audio samples) corresponding to the
control rate.

Control rate 1. The rate at which instantiation and termination of instruments, parametric
control of running instrument instances, sharing of global variables, and other
non-sample-by-sample computation occurs in a particular orchestra.
2. The rate type of variables, expressions, and statements which can generate
new values as often as the control rate.

Decoding The process of turning an MPEG-4 Structured Audio bitstream into sound.

Duration The amount of time between instantiation and termination of an instrument
instance.

Encoding The process of creating a legal MPEG-4 bitstream, whether automatically, by
hand, or using special authoring tools.

Envelope A loudness-shaping function applied to a sound, or more generally, any function
controlling a parametric aspect of a sound

Event One control instruction.

Expression A mathematical or functional combination of variable values, symbolic
constants, and opcode calls.

Formal parameter The syntactic element which gives a name to one of the parameters of an
opcode.

Future wavetable A wavetable which is declared but not defined in the SAOL orchestra; its
definition must arrive in the bitstream before it is used.

Global block The section of the orchestra which describes global variables, route and send
statements, sequence rules, and global parameters.

Global context The state space used to hold values of global variables and wavetables.

Global parameters The sampling rate, control rate, and number of input and output channels of
audio associated with a particular orchestra.

Global variable A variable which can be accessed and/or changed by several different
instruments.

Grammar A set of rules which describes the set of allowable sequences of lexical elements
comprising a particular language.

Guard expression The expression standing at the front of an if, while, or else statement which
determines whether or how many times a particular block of code is executed.

I-cycle See initialisation cycle.

Identifier A sequence of characters in a textual SAOL program which denotes a symbol.

Introduction Glossary of Terms Introduction to major elements

12 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Informative Aspects of a standards document which are provided to assist implementors, but
are not required to be implemented in order for a particular system to be
compliant to the standard.

I-pass See initialisation pass.

I-rate See initialisation rate.

Initialisation cycle See initialisation pass.

Initialisation rate The rate type of variables, expressions, and statements which are set once at
instrument instantation and then do not change.

Initialisation pass The sequence of processing which computes new values for each i-rate
expression in a particular code block.

Instance See instrument instantiation.

Instantiation The process of creating a new instrument instantiation based on an event in
the score or statement in the orchestra.

Instrument An algorithm for parametric sound synthesis, described using SAOL. An
instrument encapsulates all of the algorithms needed for one sound-generation
element to be controlled with a score.

NOTE

An MPEG-4 Structured Audio instrument does not necessarily correspond to a
real-world instrument. A single instrument might be used to represent an entire
violin section, or an ambient sound such as the wind. On the other hand, a single
real-world instrument which produces many different timbres over its
performance range might be represented using several SAOL instruments.

Instrument instantiation The state space created as the result of executing a note-creation event with
respect to a SAOL orchestra.

ivar The lexical tag indicating an i-rate variable.

K-cycle See control cycle.

K-rate See control rate.

ksig The lexical tag indicating a k-rate variable.

Lexical element See token.

Looping A typical method of wavetable synthesis. Loop points in an audio sample are
located and the sound between those endpoints is played repeatedly while being
simultaneously modified by envelopes, modulators, etc.

MIDI The Musical Instrument Digital Interface standards, see [MIDI] in Subclause
5.0.2. MIDI is one method for specifying control of synthesis in MPEG-4
Structured Audio.

Introduction Glossary of Terms Introduction to major elements

13 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Natural Sound A sound created through recording from a real acoustic space. Contrasted with
synthetic sound.

Normative Those aspects of a standard which must be implemented in order for a particular
system to be compliant to the standard.

Opcode A parametric signal-processing function which encapsulates a certain
functionality so that it may be used by several instruments.

Orchestra The set of sound-generation and sound-processing algorithms included in an
MPEG-4 bitstream. Includes instruments, opcodes, routing, and global
parameters.

Orchestra cycle A complete pass through the orchestra, during which new instrument
instantiations are created, expired ones are terminated, each instance receives
one k-cycle and one control period worth of a-cycles, and output is produced.

Parameter fields The names given to the parameters to an instrument.

P-fields See parameter fields.

Production rule In Backus-Naur Form grammars, a rule which describes how one syntactic
element may be expressed in terms of other lexical and syntactic elements.

Rate-mismatch error The condition that results when the rate semantics rules are violated in a
particular SAOL construction. A type of syntax error.

Rate semantics The set of rules describing how rate types are assigned to variables,
expressions, statements, and opcodes, and the normative restrictions that apply
to a bitstream regarding combining these elements based on their rate types.

Rate type The “speed of execution” associated with a particular variable, expression,
statement, or opcode.

Route statement A statement in the global block which describes how to place the output of a
certain set of instruments onto a bus.

Run-time error The condition that results from improper calculations or memory accesses during
execution of a SAOL orchestra.

SASBF See Sample Bank Format

SAOL The Structured Audio Orchestra Language, pronounced like the English word
“sail.” SAOL is a digital-signal processing language which allows for the
description of arbitrary synthesis and control algorithms as part of the content
bitstream.

SAOL orchestra See orchestra.

SASL The Structured Audio Score Language. SASL is a simple format which allows
for powerful and flexible control of music and sound synthesis.

Sample See Audio sample.

Introduction Glossary of Terms Introduction to major elements

14 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Sample Bank Format A component format of MPEG-4 Structured Audio which allows the
description of a set of samples for use in wavetable synthesis and processing
methods to apply to them.

Scheduler The component of MPEG-4 Structured Audio which describes the mapping
from control instructions to sound synthesis using the specified synthesis
techniques. The scheduler description provides normative bounds on event-
dispatch times and responses.

Scope The code within which access to a particular variable name is allowed.

Score A description in some format of the sequence of control parameters needed to
generate a desired music composition or sound scene. In MPEG-4 Structured
Audio, scores are described in SASL and/or MIDI.

Score time The time at which an event happens in the score, measured in beats. Score time
is mapped to absolute time by the current tempo.

Send statement A statement in the global block which describes how to pass a bus on to an
effect instrument for post-processing.

Semantics The rules describing what a particular instruction or bitstream element should
do. Most aspects of bitstream and SAOL semantics are normative in MPEG-4.

Sequence rules The set of rules, both default and explicit, given in the global block which
define in what order to execute instrument instantiations during an orchestra
cycle.

Signal variable A unit of memory, labelled with a name, which holds intermediate processing
results. Each signal variable in MPEG-4 Structured Audio is instantaneously
representable by a 32-bit floating point value.

Spatialisation The process of creating special sounds which a listener perceives as emanating
from a particular direction.

State space A set of variable-value associations which define the current computational state
of an instrument instantiation or opcode call. All the “current values” of the
variables in an instrument or opcode call.

Statement “One line” of a SAOL orchestra.

Structured audio Sound-description methods which make use of high-level models of sound
generation and control. Typically involving synthesis description, structured
audio techniques allow for ultra-low bitrate description of complex, high-quality
sounds. See [SAUD] in Subclause 5.0.5.

Symbol A sequence of characters in a SAOL program, or a symbol token in a MPEG-4
Structured Audio bitstream, which represents a variable name, instrument name,
opcode name, table name, bus name, etc.

Symbol table In an MPEG-4 Structured Audio bitstream, a sequence of data which allows the
tokenised representation of SAOL and SASL code to be converted back to a
readable textual representation. The symbol table is an optional component.

Introduction Description methods Bitstream syntax

15 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Symbolic constant A floating-point value explicitly represented as a sequence of characters in a
textual SAOL orchestra, or as a token in a bitstream.

Syntax The rules describing what a particular instruction or bitstream element should
look like. All aspects of bitstream and SAOL syntax are normative in MPEG-4.

Syntax error The condition that results when a bitstream element does not comply with its
governing rules of syntax.

Synthesis The process of creating sound based on algorithmic descriptions.

Synthetic Sound Sound created through synthesis.

Tempo The scaling parameter which specifies the relationship between score time and
absolute time. A tempo of 60 beats per minute means that the score time
measured in beats is equivalent to the absolute time measured in seconds;
higher numbers correspond to faster tempi, so that 120 beats per minute is twice
as fast.

Terminal The “client side” of an MPEG transaction; whatever hardware and software are
necessary in a particular implementation to allow the capabilities described in
this document.

Termination The process of destroying an instrument instantiation when it is no longer
needed.

Timbre The combined features of a sound which allow a listener to recognise such
aspects as the type of instrument, manner of performance, manner of sound
generation, etc. Those aspects of sound which distinguish sounds equivalent in
pitch and loudness.

Token A lexical element of a SAOL orchestra: a keyword, punctuation mark, symbol
name, or symbolic constant.

Tokenisation The process of converting a orchestra in textual SAOL format into a bitstream
representation consisting of a stream of tokens.

Variable See signal variable.

Wavetable synthesis A synthesis method in which sound is created by simple manipulation of audio
samples, such as looping, pitch-shifting, enveloping, etc.

Width The number of channels of data which an expression represents.

5.0.4 Description methods

5.0.4.1 Bitstream syntax
The Structured Audio bitstream syntax is described using MSDL, the MPEG-4 Syntactic Description
Language. See 14496-1 Subclause XXX.

Introduction Bibliography SAOL syntax

16 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.0.4.2 SAOL syntax
The textual SAOL syntax (in Subclause 5.4) is described using extended Backus-Naur format (BNF)
notation [see DRAG in Subclause 5.0.5]. BNF is a description for context-free grammars of programming
languages. Normative BNF rules will be described in the ARIEL font.

BNF grammars are composed of terminals, also called tokens, and production rules. Terminals represent
syntactic elements of the language, such as keywords and punctuation; production rules describe the
composition of these elements into structural groups.

Terminals will be represented in boldface; production rules will be represented in <angle brackets>.

The rewrite rules which map productions into sequences of other productions and terminals are represented
with the -> symbol.

EXAMPLE

<letter> -> a
<letter> -> b
<sequence> -> <letter>
<sequence> -> <letter> <sequence>

This grammar (starting from the sequence token) describes, using a recursive rewrite rule and a two-
symbol alphabet, all strings containing at least one letter which are made up of ‘a’ and ‘b’ characters.

In addition, rewrite rules using optional elements will be described using the [] symbols. Using this
notation does not increase the power of the syntax description (in terms of the languages it can represent),
but makes certain constructs simpler.

EXAMPLE

<head> -> c
<seqhead> -> [<head>] <sequence>

This grammar (starting from the seqhead token) describes, in addition to the set above, all strings
beginning with a ‘c’ character and followed by a sequence of ‘a’s and ‘b’s.

The NULL token may be used to indicate that a sequence of no characters (the empty string) is a
permissible rewrite for a particular production.

Normative aspects of the relationship between the BNF grammar, other grammar representation methods,
the bitstream syntax, and the textual description format are described in Subclause 5.4.1.

5.0.4.3 SASL Syntax
The SASL syntax is specified using extended BNF grammars, as described in Subclause 5.0.4.2.

5.0.5 Bibliography

[DRAG] Aho, Alfred V., and Ravi Sethi and Jeffrey Ullman, Compilers: Principles,
Techniques, and Tools. Reading, Mass: Addison-Wesley, 1984.

[ICASSP] Scheirer, Eric, “The MPEG-4 Structured Audio standard”, Proc 1998 IEEE
ICASSP, Seattle, 1998.

Introduction Bibliography SASL Syntax

17 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

[NETSOUND] Casey, Michael, and Paris Smaragdis, “Netsound”, Proc. 1996 ICMC, Hong
Kong, 1996.

[SAFX] Scheirer, Eric, “Structured audio and effects processing in the MPEG-4
multimedia standard”, ACM Multimedia Sys. J., in press.

[SAOL] Scheirer, Eric, “SAOL: The MPEG-4 Structured Audio Orchestra Language”,
Proc 1998 ICMC, Ann Arbor, MI, 1998.

[SAUD] Vercoe, Barry, and William G. Gardner and Eric D. Scheirer , “Structured
Audio: Creation, Transmission, and Rendering of Parametric Sound
Descriptions”. Proc. IEEE 85:5 (May 1998), pp.

[WAVE] Scheirer, Eric, and Lee Ray, “Algorithmic and wavetable synthesis in the
MPEG-4 multimedia standard”. Proc 105th Conv AES, San Francisco, 1998.

Bitstream syntax and semantics Introduction to bitstream syntax SASL Syntax

18 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.1 Bitstream syntax and semantics

5.1.1 Introduction to bitstream syntax

This Subclause describes the bitstream format defining an MPEG-4 Structured Audio bitstream.

Each group of classes is notated with normative semantics, which define the meaning of the data
represented by those classes.

5.1.2 Bitstream syntax
/*********************************
 symbol table definitions
***********************************/

class symbol {
 unsigned int(16) sym; // no more than 65536 symbols/orch + score
}

class sym_name { // one name in a symbol table
 unsigned int(4) length; // names up to 16 chars long
 unsigned int(8) name[length];
}

class symtable { // a whole symbol table
 unsigned int(16) length; // no more than 65536 symbols/orch+score
 sym_name name[length];
}

A bitstream may contain a symbol table, but this is not required. The symbol table allows textual SAOL
and SASL code to be recovered from the tokenised bitstream representation. The inclusion or exclusion of
a symbol table does not affect the decoding process.

If a symbol table is included, then all or some of the symbols in the orchestra and score shall be associated
with a textual name in the following way: each symbol (a symbol is just an integer) shall be associated with
the character string paired with that symbol in a sym_name object. There shall be no more than one name
associated with a given symbol, otherwise the bitstream is invalid. It is permissible for the symbol table to
be incomplete and contain names associated with some, but not all, symbols used in the orchestra and score.

SAOL and SASL implementations which require textual input, rather than tokenised input, are permissible
in a compliant decoder, in which case the decoder must detokenise the bitstream before it can be processed.
In such a case, any symbols without associated names are suggested to be associated with a default name of
the form _sym_x, where x is the symbol value. Names of this form are reserved in SAOL for this purpose,
and so following this suggestion guarantees that names will not clash with symbol-table-defined symbol
names.

/*********************************
 orchestra file definitions
***********************************/

class orch_token { // a token in an orchestra
 int done;

 unsigned int(8) token; // see standard token table, Annex A
 switch (token) {
 case 0xF0 : // a symbol
 symbol sym; // the symbol name
 break;

Bitstream syntax and semantics Bitstream syntax SASL Syntax

19 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 case 0xF1 : // a constant value
 float(32) val; // the floating-point value
 break;
 case 0xF2 : // a constant int value
 unsigned int(32) val; // the integer value
 break;
 case 0xF3 : // a string constant
 int(8) length;
 unsigned int(8) str[length]; // strings no more than 256 chars
 break;
 case 0xFF : // end of orch
 done = 1;
 break;
 }
}

class orc_file { // a whole orch file
 unsigned int(16) length;
 orch_token data[length];
}

An orchestra file is a string of tokens. These tokens represent syntactic elements such as reserved words,
core opcode names, and punctuation marks as given in the table in Annex A; in addition, there are five
special tokens. Token 0xF0 is the symbol token; when it is encountered, the next 16 bits in the bitstream
shall be a symbol number. Token 0xF1 is the value token; when it is encountered, the next 32 bits in the
bitstream shall be a floating-point value. This token shall be used for all symbolic constants within the
SAOL program except for those encountered in special integer contexts, as described in Subclause 5.8.
Token 0xF2 is the integer token; when it is encountered, the next 32 bits in the bitstream shall be an
unsigned integer value. Token 0xF3 is the string token; when it is encountered, the next several bits in the
bitstream shall represent a character string (this token is currently unused). Token 0xFF is the end-of-
orchestra token; this token has no syntactic function in the SAOL orchestra, but signifies the end of the
orchestra file section of the bitstream.

Not every sequence of tokens is permitted to occur as an orchestra file. Subclause 5.4 contains extensive
syntactic rules restricting the possible sequence of tokens, described according to the textual SAOL format.
Normative rules for mapping back and forth between the tokenised format and the textual format are given
in Subclause 5.8. The overall sequence of orchestra tokens shall correspond to an <orchestra> production
as given in Subclause 5.4.4.

/*********************************
 score file definitions
***********************************/

class instr_event { // a note-on event
 bit(1) has_label;
 if (has_label)
 symbol label;
 symbol iname_sym; // the instrument name
 float(32) dur; // note duration
 unsigned int(8) num_pf;
 float(32) pf[num_pf]; // all the pfields (no more than 256)
}

class control_event { // a control event
 bit(1) has_label;
 if (has_label)
 symbol label;
 symbol varsym; // the controller name
 float(32) value; // the new value
}

class table_event {
 symbol tname; // the name of the table

Bitstream syntax and semantics Bitstream syntax SASL Syntax

20 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 bit(1) destroy; // a table destructor
 if (!destroy) {
 token tgen; // a core wavetable generator
 bit(1) refers_to_sample;
 if (refers_to_sample)
 symbol table_sym; // the name of the sample
 unsigned int(16) num_pf; // the number of pfields
 float(32) pf[num_pf]; // all the pfields
 }
}

class end_event {
 // fixed at nothing
}

class tempo_event { // a tempo event
 float(32) tempo;
}

class score_line {
 float(32) time; // the event time
 bit(3) type;
 switch (type) {
 case 0b000 : instr_event inst; break;
 case 0b001 : control_event control; break;
 case 0b010 : table_event table; break;
 case 0b100 : end_event end; break;
 case 0b101 : tempo_event tempo; break;
 }
}

class score_file {
 unsigned int(20) num_lines; // a whole score file
 score_line lines[num_lines];
}

A score file is a set of lines of score information provided in the stream information header. Thus, events
which are known before the real-time bitstream transmission begins may be included in the header, so that
they are available to the decoder immediately, which may aid efficient computation in certain
implementations. Each line shall be one of five events. Each type of event has different implications in the
decoding and scheduling process, see Subclause 5.3.3. An instrument event specifies the start time,
instrument name symbol, duration, and any other parameters of a note played on a SAOL instrument. A
control event specifies a control parameter which is passed to a instrument or instruments already
generating sound. A table event dynamically creates or destroys a global wavetable in the orchestra. An
end event signifies the end of orchestra processing. A tempo event dynamically changes the tempo of
orchestra playback.

A score file need not be presented in increasing order of event times; the events shall be “sorted” by the
scheduler as they are processed.

/*********************************
 MIDI definitions
***********************************/

/* NB that a midi_file (SMF format) is not just an array
 of MIDI events */

class midi_event {
 // not done yet
}

class midi_file {
 /* Right now it’s just an array of bytes; I’d rather do

Bitstream syntax and semantics Bitstream syntax SASL Syntax

21 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 this that lay out the whole SMF format here */
 unsigned int(20) length;
 unsigned int(8) data[length];
}

The MIDI chunks allow the inclusion of MIDI score information in the bitstream header and bitstream. The
MIDI event class contains a single MIDI instruction as specified in [MIDI]; the MIDI file class contains an
array of bytes corresponding to a Standard MIDIFile as specified in [MIDI]. Note that not every sequence
of data may occur in either case; the legal syntaxes of MIDI events and MIDIFiles as specified in [MIDI]
place normative bounds on syntactically valid MPEG-4 Structured Audio bitstreams. The semantics of
MIDI data are given in Subclause 5.9 (for Profile 1 and 2 implementations) and Subclause 5.10 (for Profile
4 implementations).

/**********************************
 sample data

************************************/

class sample {
 /* note that ’sample’ can be used for any big chunk of data
 which needs to get into a wavetable */
 symbol sample_name_sym;
 unsigned int(24) length; // length in samples
 bit(1) has_srate;
 if (has_srate)
 unsigned int(17) srate; // sampling rate (needs to go to 96 KHz)
 bit(1) has_loop;
 if (has_loop) {
 unsigned int(24) loopstart; // loop points in samples
 unsigned int(24) loopend;
 }
 bit(1) has_base;
 if (has_base)
 float(32) basecps; // base freq in Hz
 bit(1) float_sample;
 if (float_sample) {
 float(32) float_sample_data[length];
 }
 else {
 int(16) sample_data[length]; // all the data
 }
}

A sample chunk includes a block data which will be included in a wavetable in a SAOL orchestra. Each
sample consists of a name, a length, a block of data, and four optional parameters: the sampling rate, the
loop start and loop end points, and the base frequency. Access to the data in the sample is provided
through the sample core wavetable generator, see Subclause 5.6.2.

The sample data may be represented either as 32-bit floating point values, in which case it shall be scaled
between –1 and 1, or may be represented as 16-bit integer values, in which case it shall be scaled between
-32767 and 32768. In the case that the sample data is represented as integer values, upon inclusion in a
wavetable, it shall be rescaled to floating-point as described in Subclause 5.6.2.

/**********************************
 sample bank data

************************************/

The sample bank chunk describes a bank of wavetable data and associated processing parameters for use
with the sample bank synthesis procedure in Subclause 5.9.

const int sbf_chunk_ID = 0x7366626b; // ‘sfbk’
const int INFO_list_ID = 0x494e464f; // ‘INFO’
const int ifil_chunk_ID = 0x6966696c; // ‘ifil’

Bitstream syntax and semantics Bitstream syntax SASL Syntax

22 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

const int isng_chunk_ID = 0x69736e67; // ‘isng’
const int INAM_chunk_ID = 0x494e414d; // ‘INAM’
const int irom_chunk_ID = 0x69726f5d; // ‘irom’
const int iver_chunk_ID = 0x69766572; // ‘iver’
const int ICRD_chunk_ID = 0x49435244; // ‘ICRD’
const int IENG_chunk_ID = 0x49454e47; // ‘IENG’
const int IPRD_chunk_ID = 0x49505244; // ‘IPRD’
const int ICOP_chunk_ID = 0x49434f50; // ‘ICOP’
const int ICMT_chunk_ID = 0x49434d54; // ‘ICMT’
const int ISFT_chunk_ID = 0x49534654; // ‘ISFT’
const int sdta_chunk_ID = 0x73647461; // ‘sdta’
const int smpl_chunk_ID = 0x736d706c; // ‘smpl’
const int pdta_chunk_ID = 0x70647461; // ‘pdta’
const int phdr_chunk_ID = 0x70686472; // ‘phdr’
const int pbag_chunk_ID = 0x70626167; // ‘pbag’
const int pmod_chunk_ID = 0x706d6f64; // ‘pmod’
const int pgen_chunk_ID = 0x7067656e; // ‘pgen’
const int inst_chunk_ID = 0x696e7374; // ‘inst’
const int ibag_chunk_ID = 0x69626167; // ‘ibag’
const int imod_chunk_ID = 0x696d6f64; // ‘imod’
const int igen_chunk_ID = 0x6967656e; // ‘igen’
const int shdr_chunk_ID = 0x73686472; // ‘shdr’

aligned(16) class chunk: bit(32) ckID = 0x00000000 {
 unsigned int(32) ckSize; // size of chunk data in bytes
}

class ifil_chunk extends chunk: bit(32) ckID = ifil_chunk_ID {
 unsigned int(16) wMajor; // file format version number
 unsigned int(16) wMinor;
}

class isng_chunk extends chunk: bit(32) ckID = isng_chunk_ID {
 char(8) isng[ck_hdr.ckSize]; // sound engine identifier
}

class INAM_chunk extends chunk: bit(32) ckID = INAM_chunk_ID {
 char(8) INAM[ck_hdr.ckSize]; // bank name
}

class irom_chunk extends chunk: bit(32) ckID = irom_chunk_ID {
 char(8) irom[ck_hdr.ckSize]; // rom name
}

class iver_chunk extends chunk: bit(32) ckID = iver_chunk_ID {
 unsigned int(16) wMajor; // rom version
 unsigned int(16) wMinor;
}

class ICRD_chunk extends chunk: bit(32) ckID = ICRD_chunk_ID {
 char(8) ICRD[ck_hdr.ckSize]; // creation date
}

class IENG_chunk extends chunk: bit(32) ckID = IENG_chunk_ID {
 char(8) IENG[ck_hdr.ckSize]; // sound designer name
}

class IPRD_chunk extends chunk: bit(32) ckID = IPRD_chunk_ID {
 char(8) IPRD[ck_hdr.ckSize]; // product name
}

class ICOP_chunk extends chunk: bit(32) ckID = ICOP_chunk_ID {
 char(8) ICOP[ck_hdr.ckSize]; // copyright string
}

class ICMT_chunk extends chunk: bit(32) ckID = ICMT_chunk_ID {

Bitstream syntax and semantics Bitstream syntax SASL Syntax

23 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 char(8) ICMT[ck_hdr.ckSize]; // comment string
}

class ISFT_chunk extends chunk: bit(32) ckID = ISFT_chunk_ID {
 char(8) ISFT[ck_hdr.ckSize]; // tool name
}

class INFO_list extends chunk: bit(32) ckID = INFO_list_ID {
 ifil_chunk ifil_ck;
 isng_chunk isng_ck;
 INAM_chunk INAM_ck;
 aligned(16) bit(32)* test0;
 if (test0 == irom_chunk_ID) {
 irom_chunk irom_ck;
 }
 aligned(16) bit(32)* test1;
 if (test1 == iver_chunk_ID) {
 iver_chunk iver_ck;
 }
 aligned(16) bit(32)* test2;
 if (test2 == ICRD_chunk_ID) {
 ICRD_chunk ICRD_ck;
 }
 aligned(16) bit(32)* test3;
 if (test3 == IENG_chunk_ID) {
 IENG_chunk IENG_ck;
 }
 aligned(16) bit(32)* test4;
 if (test4 == IPRD_chunk_ID) {
 IPRD_chunk IPRD_ck;
 }
 aligned(16) bit(32)* test5;
 if (test5 == ICOP_chunk_ID) {
 ICOP_chunk ICOP_ck;
 }
 aligned(16) bit(32)* test6;
 if (test6 == ICMT_chunk_ID) {
 ICMT_chunk ICMT_ck;
 }
 aligned(16) bit(32)* test7;
 if (test7 == ISFT_chunk_ID) {
 ISFT_chunk ISFT_ck;
 }
}

class smpl_chunk extends chunk: bit(32) ckID = smpl_chunk_ID {
 int(16) smpl[ck_hdr.ckSize / 2]; // sample data
}

class sdta_list extends chunk: bit(32) ckID = sdta_chunk_ID {
 smpl_chunk smpl_ck;
}

class phdr_chunk extends chunk: bit(32) ckID = phdr_chunk_ID {
 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 38; i++) {
 char(8) achPresetName[20];
 unsigned int(16) wPreset;
 unsigned int(16) wBank;
 unsigned int(16) wPresetBagNdx;
 unsigned int(32) dwLibrary;
 unsigned int(32) dwGenre;
 unsigned int(32) dwMorphology;
 }
}

class bag_chunk extends chunk {

Bitstream syntax and semantics Bitstream syntax SASL Syntax

24 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 4; i++) {
 unsigned int(16) wGenNdx;
 unsigned int(16) wModNdx
 }
}

class pbag_chunk extends bag_chunk: bit(32) ckID = pbag_chunk_ID {
}

class ibag_chunk extends bag_chunk: bit(32) ckID = ibag_chunk_ID {
}

class mod_chunk extends chunk {
 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 10; i++) {
 unsigned int(16) sfModSrcOper;
 unsigned int(16) sfModDestOper;
 int(16) modAmount;
 unsigned int(16) sfModAmtSrcOper;
 unsigned int(16) sfModTransOper;
 }
}

class pmod_chunk extends mod_chunk: bit(32) ckID = pmod_chunk_ID {
}

class imod_chunk extends mod_chunk: bit(32) ckID = imod_chunk_ID {
}

class gen_chunk extends chunk {
 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 4; i++) {
 unsigned int(16) sfGenOper;
 bit(16) genAmount;
 }
}

class pgen_chunk extends gen_chunk: bit(32) ckID = pgen_chunk_ID {
}

class igen_chunk extends gen_chunk: bit(32) ckID = igen_chunk_ID {
}

class inst_chunk extends chunk {
 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 22; i++) {
 char(8) achInstName[20];
 unsigend int(16) wInstBagNdx;
 }
}

class shdr_chunk extends chunk {
 unsigned int i;
 for (i = 0; i < ck_hdr.ckSize / 46; i++) {
 char(8) achSampleName[20];
 unsigned int(32) dwStart;
 unsigned int(32) dwEnd;
 unsigned int(32) dwStartloop;
 unsigned int(32) dwEndloop;
 unsigned int(32) dwSampleRate;
 unsigned int(8) byOriginalPitch;
 int(8) chCorrection;
 unsigned int(16) wSampleLink;
 unsigned int(16) sfSampleType;
 }
}

Bitstream syntax and semantics Bitstream syntax SASL Syntax

25 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

class pdta_list extends chunk: bit(32) ckID = pdta_chunk_ID {
 phdr_chunk phdr_ck; // preset headers
 pbag_chunk pbag_ck; // preset index list
 pmod_chunk pmod_ck; // preset modulator list
 pgen_chunk pgen_ck; // preset generator list
 inst_chunk inst_ck; // instrument names and indices
 ibag_chunk ibag_ck; // instrument index list
 imod_chunk imod_ck; // instrument modulator list
 igen_chunk igen_ck; // instrument generator list
 shdr_chunk shdr_ck; // sample headers
}

class sbf extends chunk: bit(32) ckID = sbf_chunk_ID {
 INFO_list INFO_lt;
 sdta_list sdta_lt;
 pdta_list pdta_lt;
}

/***********************************
 bitstream formats
***********************************/

class SA_decoder_config { // the bitstream header
 bit more_data = 1;

 while (more_data) { // must have at least one chunk
 bit(3) chunk_type;
 switch (chunk_type) {
 case 0b000 : orc_file orc; break;
 case 0b001 : score_file score; break;
 case 0b010 : midi_file SMF; break;
 case 0b011 : sample samp; break;
 case 0b100 : sbf sample_bank; break;
 case 0b101 : symtable sym; break;
 }
 bit(1) more_data;
 }
}

The bitstream decoder configuration contains all the information required to configure and start up a
structured audio decoder. It contains a sequence of one or more chunks, where each chunk is of one of the
following types: orchestra file, score file, midi file, sample data, sample bank, or symbol table.

class SA_access_unit { // the streaming data

 bit(2) event_type;
 switch (event_type) {
 case 0b00 : score_line score_ev; break;
 case 0b01 : midi_event midi_ev; break;
 case 0b10 : sample samp; break;
 }
}

The Structured Audio access unit contains real-time streaming control information to be provided to a
running Structured Audio decoding process. It shall not contain new instrument definitions; the orchestra
configuration is fixed at decoder startup. It may contain score lines, MIDI events, and new sample data.

Profiles Bitstream syntax SASL Syntax

26 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.2 Profiles
There are three profiles standardised for Structured Audio, called Profile1, Profile2, and Profile4. Each of
these profiles corresponds to a particular set of application requirements. The default profile is Profile 4;
when reference is made to MPEG-4 Structured Audio format without reference to a profile, it shall be
understood that the reference is to Profile 4.

Terminals implementing MPEG-4 Systems Audio Composition Profile XXX (see ISO/IEC 14496-1,
Subclause XXX) shall also implement Structured Audio Profile 4.

1. MIDI only. In this profile, only the midi_file chunk shall occur in the stream information header, and
only the midi_event event shall occur in the bitstream data. In this profile, the General MIDI patch
mappings are used, and the decoding process is described in Subclause 5.9. This profile is used to
enable backward-compatibility with existing MIDI content and rendering devices. Implementation-
independent sound quality cannot be produced in this profile.

1. Wavetable synthesis. In this profile, only the midi_file and sbf chunks shall occur in the stream
information header, and only the midi_event event shall occur in the bitstream data. This profile is
used to describe music and sound-effects content in situations which the full flexibility and
functionality of SAOL, including 3-D audio, is not required. In this case, the decoding process is
described in Subclause 5.9.6.

4. Standard profile. All bitstream elements and stream information elements may occur.

The decoding process for Profile 4 is described in Subclause 5.3.

Decoding process Introduction Relationship with systems layer

27 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.3 Decoding process

5.3.1 Introduction

This Subclause describes the decoding process, in which a bitstream conforming to Profile 4 is converted
into sound. The decoding process for Profile 1 bitstreams is described in Subclause 5.9, and the decoding
process for Profile 2 bitstreams in Subclause 5.9.6.

5.3.2 Decoder configuration header

 At the creation of a Structured Audio Elementary Stream, a Structured Audio decoder is instantiated and a
bitstream object of class SA_decoder_config provided to that decoder as configuration information. At
this time, the decoder shall initialise a run-time scheduler, and then parse the stream information object into
its component parts and use them as follows:

• Orchestra file: The orchestra file shall be checked for syntactic conformance with the SAOL
grammar and rate semantics as specified in Subclause 5.4. Whatever preprocessing (i.e.,
compilation, allocation of static storage, etc.) need be done to prepare for orchestra run-time
execution shall be performed.

• Score file: Each event in the score file shall be registered with the scheduler. To “register”
means to inform the scheduler of the presence of a particular parametrised event at a particular
future time, and the scheduler’s associated actions.

• MIDI file: Each event in the MIDI file shall be converted into an appropriate event as
described in Subclause 5.9, and those events registered with the scheduler.

• Sample bank: The data in the bank shall be stored, and whatever preprocessing necessary to
prepare for using the bank for synthesis shall be performed.

• Sample data: The data in the sample shall be stored, and whatever preprocessing necessary to
prepare the data for reference from a SAOL wavetable generator shall be performed. If the
sample data is represented as 16-bit integers in the bitstream, it shall be converted to floating-
point format at this time.

If there is more than one orchestra file in the stream information header, the various files are combined
together via concatenation and processed as one large orchestra file. That is, each orchestra file within the
bitstream refers to the same global namespace, instrument namespace, and opcode namespace.

5.3.3 Bitstream data and sound creation

5.3.3.1 Relationship with systems layer
At each time step within the systems operation, the systems layer may present the Structured Audio decoder
with an Access Unit containing data conforming to the SA_access_unit class. The run-time responsibility
of the Structured Audio decoder is to receive these AU data elements, parse and understand them as the
various Structured Audio bitstream data elements, execute the on-going SAOL orchestra, via the scheduler,
to produce one Composition Unit of output, and present the systems layer with that Composition Unit.

Decoding process Bitstream data and sound creation Bitstream data elements

28 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.3.3.2 Bitstream data elements
As Access Units are received from the systems demultiplexer, they are parsed and used by the Structured
Audio decoder in various ways, as follows:

• Score line events shall be registered with the scheduler.

• MIDI events shall be converted into appropriate SAOL events (see Subclause 5.10) and then
registered with the scheduler, if they have time stamps, or executed in the next k-cycle, if not.

• Sample data shall be stored, and whatever preprocessing is necessary for reference by
forthcoming score lines containing references to that sample shall be performed. . If the
sample data is represented as 16-bit integers in the bitstream, it shall be converted to floating-
point format at this time.

5.3.3.3 Scheduler semantics

5.3.3.3.1 Purpose of scheduler
The scheduler is the central control mechanism of a Structured Audio decoding system. It is responsible for
handling events by instantiating and terminating instruments, keeping track of what instrument instantiations
are active, instructing the various instrument instantiations to perform synthesis, routing the output of
instruments onto busses, and sending busses to effects instruments. Although there are many ways to
perform these tasks, the exact nature of what must be done can be clearly specified. This Subclause
provides normative bounds on the activities of the scheduler.

5.3.3.3.2 Instrument instantiation
To instantiate an instrument is to create data space for its variables and the data space required for any
opcodes called by that instrument. When an instrument is instantiated, the following tasks shall be
performed. First, space for any parameter fields shall be allocated and their values set according to the p-
fields of the instantiating expression or event. Then, space for any locally declared variables shall be
allocated and these variable values set to 0. Then, the current values of any imported i-rate variables shall
be copied into the local storage space. Then, locally declared wavetables shall be created and filled with
data according to their declaration and the appropriate rules in Subclause 5.6.

5.3.3.3.3 Instrument termination
To terminate an instrument instantiation is to destroy the data space for that instance.

5.3.3.3.4 Instrument execution
To execute an instrument instantiation at a particular rate is to calculate the results of the instructions given
in that instrument definition. When an instrument instance is executed at a particular rate, the following
steps shall be performed. First, the values of any global variables and wavetables imported by that
instrument at that rate shall be copied into the storage space of the instrument. In addition, when executing
at the a-rate an instrument instance which is the target of a send statement, the current value of the input
standard name in the instance shall be set to the current value of the bus or busses referenced in the send
statement. Then, the code block for that instrument shall be executed at the particular rate with regard to
the data space of the instrument instantiation, as given by the rules in Subclause 5.4.6.6. Then, the values of
any global variables and wavetables exported by that instrument at that rate shall be copied into the global

Decoding process Bitstream data and sound creation Scheduler semantics

29 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

storage space. Finally, when executing an instrument instantiation at the a-rate, the value of the instance
output shall be added to the bus onto which the instrument is routed according to the rules in Subclause
5.4.5.4, unless the instance is the target of a send expression referencing the special bus output_bus, in
which case the output of the instrument instance is the output of the orchestra and may be turned into sound

5.3.3.3.5 Orchestra startup and configuration
At orchestra startup time, before the first Composition Unit of audio samples is created in the scheduler, the
following tasks shall be performed. First, space for any global signal variables (see Subclause 5.4.5.3) shall
be allocated and their values set to zero. If there is an instrument called startup in the orchestra, that
instrument shall be instantiated and executed at the i-rate. After this execution is complete, then all global
wavetables are created and filled with data according to their definitions in the global block of the orchestra
and the appropriate rules in Subclause 5.6.

After the global wavetable creation, the orchestra busses are initialised. Each bus’s width is determined, in
the order specified by the global sequencing rules (Subclause 5.4.5.6), as the width of the output expression
by instruments on that bus. For the purposes of calculating bus widths, any instrument which does not
receive any bus data according to the sequence rules shall have an inchannels width of 0 (this specification
is needed since output widths may depend on the value of inchannels).

After busses are created, all instruments which are the targets of send statements as described in Subclause
5.4.5.5 shall be instantiated and executed at the i-rate in the order specified by the global sequencing rules
described in the global block according to Subclause 5.4.5.6. Finally, the global absolute orchestra time
shall be set to 0.

NOTE

A time is called absolute if it is specified in seconds. When a tempo instruction is first decoded and the
value of tempo changes from its default value, the score time and the absolute time are not identical
anymore; all the times in the score, subsequent to a tempo line execution, are scaled according to the new
tempo and enqueued in absolute dispatch and duration times as specified in Subclause 5.3.3.3.6, list item 7.

5.3.3.3.6 Decoder execution while streaming
In each orchestra cycle, one Composition Unit of samples is produced by the real-time synthesis process.
This synthesis is performed according to the rules below and the resulting orchestra output, as described in
list item 11, is presented to the Systems layer as a Composition Unit. To execute one orchestra cycle, the
following tasks shall be performed in the order denoted:

1. If there is an end event whose dispatch time is earlier than the current absolute orchestra time,
no further output is produced, and all future requests from the systems layer produce
Composition Units are responded to with buffers of all 0s.

2. If there are any instrument events whose dispatch time is earlier than the current absolute
orchestra time, an instrument instantiation is created for each such instrument event (see
Subclause 5.3.3.3.2), and those instantiations are each executed at the i-rate (see Subclause
5.3.3.3.4) in the order prescribed by the global sequencing rules. If the instrument event
specifies a duration for that instrument instantiation, the instrument instantiation shall be
scheduled for termination at the time given by the sum of the current absolute orchestra time and
the specified duration (scaled to absolute time units according to the actual tempo, if any).

NOTE

Decoding process Bitstream data and sound creation Scheduler semantics

30 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If the current orchestra time differs from the instrument dispatch time, the former shall be used
to schedule instance termination.

3. If there are any active instrument instantiations whose termination time is earlier than the current
absolute orchestra time, then the released standard name shall be set to 1 within each such
instrument instance, and the instance is marked for termination in step 12, below.

4. If there are any control events whose dispatch time is earlier than the current absolute orchestra
time, the global variables or instrument variables within instrument instantiations labelled by
that control event shall have their values updated accordingly (see Subclause 5.7.4). Note that
this implies that no more than one control change per variable per control cycle may be received
by the orchestra. If multiple control changes are received in a single control cycle, the resulting
value of the instrument or global variable is unspecified.

5. If there are any table events whose dispatch time is earlier than the current absolute orchestra
time, global wavetables shall be created or destroyed as specified by the table event (see
Subclause 5.7.5).

6. If there are any MIDI events whose timestamp is earlier than the current orchestra time, or
which have been received without timestamps since the last execution of this rule, they are
dispatched according to their semantics in Subclause 5.10.3.

7. If there are any tempo events whose dispatch time is earlier than the current absolute orchestra
time, then the global tempo standard variable shall be set to the specified value, and all the
score times after the current absolute time shall be scaled according to the new tempo value.
The already scheduled times for terminations are also scaled in their remaining part, according
to the ratio between the old and new tempo. Existing extend times are not affected, since they
are specified in absolute time and are thus “outside” the score.

NOTE

If the current orchestra time differs from the tempo dispatch time, the former shall be used to
calculate the new durations and future dispatch times of events.

8. If the speed field of the AudioSource scene node responsible for instantiating this decoder (see
Subclause 5.11) has been changed in the last k-cycle, the tempo standard variable shall be set to
60 times the value specified in Subclause XXX of FCD ISO 14496-1, and events in the
orchestra shall be rescaled as specified in (7) above.

9. The value of each channel of each bus shall be set to 0.

10. Each active instrument instance shall be executed once at the k-rate and n times at the a-rate,
where n is the number of samples in the control period (see Subclause 5.4.5.2.2). Each
execution at the k-rate shall be in the order given by the global sequencing rules, and each
corresponding execution at the a-rate (that is, the first a-rate execution in a k-cycle of each, the
second a-rate execution in a k-cycle of each, etc.) shall be in the order given by the global
sequencing rules.

NOTE 1

If instrument a is sequenced before instrument b according to the rules in Subclause 5.4.5.6,
then the k-rate execution of a shall be strictly before the k-rate execution of b, and the k-rate
execution of a shall be strictly before the first a-rate execution of a, and the first a-rate execution
of a shall be strictly before the first a-rate execution of b. However, there is no normative

Decoding process Conformance Scheduler semantics

31 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

sequencing between the second a-rate execution of a and the first a-rate execution of b, or
between the first a-rate execution of a and the k-rate execution of b, within a particular orchestra
cycle.

NOTE 2

In accordance with to the conformance rules in Subclause 5.3.4, the execution ordering
described in this Subclause may be rearranged or ignored when it can be determined from
examination of the orchestra that to do so will have no effect on the output of the decoding
process. “Has no effect” shall be taken to mean that the output of the decoding process in
rearranged order is sample-by-sample identical to the output of the decoding process performed
strictly according to the rules in this Subclause.

11. If the special bus output_bus is sent to an instrument, the output of that instrument at each a-
cycle is the orchestra output at that a-cycle. Otherwise, the value of the special bus output_bus
after each instrument has been executed for an a-cycle is the orchestra output at that a-cycle. If
the value of the current orchestra output is greater than 1 or less than –1, it shall be set to 1 or -1
respectively (hard clipping).

12. For each instance which was marked for termination in step 3, above: if that instrument instance
called extend with a parameter greater than the amount of time in a control-cycle, the
instrument is not terminated. All other instrument instances marked for termination in step 3 are
terminated (see Subclause 5.3.3.3.3). As discussed in Subclause 5.10.3.2.9, in the case of an
“All Notes Off” MIDI message, instances may not extend themselves, and are destroyed at this
time.

13. The current global absolute orchestra time is advanced by one control period.

5.3.4 Conformance

With regard to all normative language in this Sub-Part of ISO 14496-3, conformance to the normative
language is measured at the time of orchestra output. Any optimisation of SAOL code or rearrangement of
processing sequence may be performed as long as to do so has no effect on the output of the orchestra.
“Has no effect” in this sense means that the output of the rearranged or optimised orchestra is sample-by-
sample identical to the output of the original orchestra according to the decoding rules given in this Subpart.

SAOL syntax and semantics Relationship with bitstream syntax Scheduler semantics

32 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4 SAOL syntax and semantics

5.4.1 Relationship with bitstream syntax

The bitstream syntax description as given in Subclause 5.1 specifies the representation of SAOL
instruments and algorithms that shall be presented to the decoder in the bitstream. However, the tokenised
description as presented there is not adequate to describe the SAOL language syntax and semantics. In
addition, for purposes of enabling bitstream creation and exchange in robust manner, it is useful to have a
standard human-readable textual representation of SAOL code in addition to the tokenised binary format.

The Backus-Naur Format (BNF) grammar presented in this Subclause denotes a language, or an infinite set
of programs; the legal programs which may be transmitted in the bitstream are restricted to this set. Any
program which cannot be parsed by this grammar is not a legal SAOL program – it has a syntax error – and
a bitstream containing it is an invalid bitstream. Although the bitstream is made up of tokens, the grammar
will be described in terms of lexical elements – a textual representation – for clarity of presentation. The
syntactic rules expressed by the grammar which restrict the set of textual programs also normatively restrict
the syntax of the bitstream, through the relationship of the bitstream and the textual format in the normative
tokenisation process.

This Subclause thus describes a textual representation of SAOL which is standardised, but stands outside of
the bitstream-decoder relationship. Subclause 5.8 describes the mapping between this textual representation
and the bitstream representation. The exact normative semantics of SAOL will be described in reference to
the textual representation, but also apply to the tokenised bitstream representation as created via the
normative tokenisation mapping.

Annex C contains a grammar for the SAOL textual language, represented in the ‘lex’ and ‘yacc’ formats.
Using these versions of the grammar, parsers can be automatically created using the ‘lex’ and ‘yacc’ tools.
However, these versions are for informative purposes only; there is no requirement to use these tools in
building a decoder.

Normative language regarding syntax in this Subclause provides bounds on syntactically legal SAOL
programs, and by extension, the syntactically legal bitstream sequences which can appear in an orchestra
bitstream class. That is, there are constructions which appear to be permissible upon reading only the BNF
grammar, but are disallowed in the normative text accompanying the grammar. The status of such
constructions is exactly that of those which are outside of the language defined by the grammar alone. In
addition, normative language describing static rate semantics further bounds the set of syntactically legal
SAOL programs, and by extension, the set of syntactically legal bitstream sequences.

The decoding process for bitstreams containing syntactically illegal SAOL programs (i.e., SAOL programs
which do not conform to the BNF grammar, or contain syntax errors or rate mismatch errors) is unspecified.

Normative language regarding semantics in this Subclause describes the semantic bounds on the behaviour
of the Structured Audio decoder. Certain constructions describe “run-time error” situations; the behaviour
of the decoder in such circumstances is not normative, but implementations are encouraged to recover
gracefully from such situations and continue decoding if possible.

5.4.2 Lexical elements

SAOL syntax and semantics Lexical elements Concepts

33 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.2.1 Concepts
The textual SAOL orchestra contains punctuation marks, which syntactically disambiguate the orchestra;
identifiers, which denote symbols of the orchestra; numbers, which denote constant values; string constants,
which are not currently used; comments, which allow internal documentation of the orchestra; and
whitespace, which lexically separates the various textual elements. These elements do not occur in the
bitstream – since each is represented there by a token – but we define them here to ground the subsequent
discussion of SAOL. Within the rest of Subclause 5.4, when we discuss the semantics of “an identifier”,
this shall be taken to normatively refer to the semantics of the symbol denoted by that identifier; the
language used is for clarity of presentation.

A lexical grammar for parsing SAOL, written in the ‘lex’ language, is provided for informative purposes in
Annex 5.C.

5.4.2.2 Identifiers

An identifier is a series of one or more letters, digits and the underscore that begins with a letter or
underscore; it denotes a symbol of the orchestra. Every identifier which consists of the same characters in
the first 16 characters (is equivalent under string comparison to the first 16 characters) denotes the same
symbol. Identifiers are case-sensitive, meaning that identifiers which differ only in the case of one or more
characters denote different symbols.

A string of characters equivalent to one of the reserved words listed in Subclause 5.4.9, to one of the
standard names listed in Subclause 5.4.6.8, to the name of one of the core opcodes listed in Subclause 5.5.3,
or to the name of one of the core wavetable generators listed in Subclause 5.6 does not denote a symbol, but
rather denotes that reserved word, standard name, core opcode, or core wavetable generator.

An identifier is denoted in the BNF grammar below by the terminal symbol <ident>.

5.4.2.3 Numbers

There are two kinds of symbolic constants which hold numeric values in SAOL: integer constants and
floating-point constants.

The integer constant must occur in certain contexts, such as array definitions. An integer token is a series of
one or more digits. Since the contexts in which integers must occur in SAOL do not allow negative values,
there is no provision for negative integers. A string of characters which appears to be a negative integer
shall be lexically analysed as a floating-point constant. No integer constant greater than 232 (4294967296)
shall occur in the orchestra.

An integer constant is denoted in the BNF grammar below by the terminal symbol <int>.

The floating-point constant occurs in SAOL expressions, and denotes a constant numeric value. A floating-
point token consists of a base, optionally followed by an exponent. A base is either a series of one or more
digits, optionally followed by a decimal point and a series of zero or more digits, or a decimal point
followed by a series of one or more digits. An exponent is the letter e, optionally followed by either a + or
– character, followed by a series of one or more digits. Since the floating-point constant appears in a SAOL
expression, where the unary negation operator is always available, floating-point constants need not be
lexically negative. Every floating-point constant in the orchestra shall be representable by a 32-bit floating-
point number.

SAOL syntax and semantics Variables and values String constants

34 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

A floating-point constant is denoted in the BNF grammar below by the terminal symbol <number>.

5.4.2.4 String constants
String constants are not used in the normative SAOL specification, but a description is provided here so that
they may be treated consistently by implementors who choose to add functionality over and above
normative requirements to their implementations.

A string constant denotes a constant string value, that is, a character sequence. A string constant is a series
of characters enclosed in double quotation marks (“). The double quotation character may be included in
the string constant by preceding it with a backslash (\) character. Any other character, including the line-
break (newline) character, may be explicitly enclosed in the quotation marks.

The interpretation and use of string constants is left open to implementors.

5.4.2.5 Comments
Comments may be used in the textual SAOL representation to internally document an orchestra. However,
they are not included in the bitstream, and so are lost on a tokenisation/detokenisation sequence.

A comment is any series of characters beginning with two slashes (//), and terminating with a new line.
During lexical analysis, whenever the // element is found on a line, the rest of the line is ignored.

5.4.2.6 Whitespace
Whitespace serves to lexically separate the various elements of a textual SAOL orchestra. It has no
syntactic function in SAOL, and is not represented in the bitstream, so the exact whitespacing of a textual
orchestra is lost on a tokenisation/detokenisation sequence.

A whitespace is any series of one or more space, tab, and/or newline characters.

5.4.3 Variables and values

Each variable within the SAOL orchestra holds a value, or an ordered set of values for array variables, as an
intermediate calculation by the orchestra. At any point in time, the value of a variable, sample in a
wavetable, or single element of an array variable, shall be represented by a 32-bit floating-point value.

Conformance to this Subclause is in accordance with Subclause 5.3.4; that is, implementations are free to
use any internal representation for variable values, so long as the results calculated are identical to the
results of the calculations using 32-bit floating-point values.

NOTE

For certain sensitive digital-filtering operations, the results of using greater precision in a calculation may
be equivalently detrimental to orchestra output as the results of using less precision, as the stability of the
filter may be critically dependent on the quantization error which is provided with 32-bit values. It is
strongly deprecated for bitstreams to contain code which generates widely different results when calculated
with 32-bit and 64-bit arithmetic.

At orchestra output, the values calculated by the orchestra should reside between a minimum value of –1
and a maximum value of 1. These values at orchestra output represent the maximum negatively- and
positively-valued audio samples which can be produced by the terminal. If the values calculated by the

SAOL syntax and semantics Orchestra Syntactic form

35 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

orchestra fall outside that range, they are clipped to [-1,1] as described in Subclause 5.3.3.3 list item 11.
When the terminal presents the sound to a listener, it is likely that further rescaling of the signal will be
necessary, as required by the particular digital-analog converter present in the terminal. This scaling is not
done by the orchestra, but is outside the scope of the standard and happens after all processing described in
Subclause 5.3.3.3 is completed.

5.4.4 Orchestra

<orchestra> -> <orchestra element> <orchestra>
<orchestra> -> <orchestra element>

The orchestra is the collection of signal processing routines and declarations that make up a Structured
Audio processing description. It shall consist of a list of one or more orchestra elements.

<orchestra element> -> <global block>
<orchestra element> -> <instrument declaration>
<orchestra element> -> <opcode declaration>
<orchestra element> -> <template declaration>
<orchestra element> -> NULL

There are four kinds of orchestra elements:

1. The global block contains instructions for global orchestra parameters, bus routings, global
variable declarations, and instrument sequencing. It is not permissible to have more than one
global block in an orchestra.

2. Instrument declarations describe sequences of processing instructions which can be
parametrically controlled using SASL or MIDI score files.

3. Opcode declarations describe sequences of processing instruments which provide
encapsulated functionality used by zero or more instruments in the orchestra.

4. Template declarations describe multiple instruments which differ only slightly using a concise
parametric form.

Orchestra elements may appear in any order within the orchestra; in particular, opcode definitions may
occur either syntactically before or after they are used in instruments or other opcodes.

5.4.5 Global block

5.4.5.1 Syntactic form
<global block> -> global { <global list> }
<global list> -> <global statement> <global list>
<global list> -> NULL

A global block shall contain a global list, which shall consist of a sequence of zero or more global
statements.

<global statement> -> <global parameter>
<global statement> -> <global variable declaration>

SAOL syntax and semantics Global block Global parameter

36 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

<global statement> -> <route statement>
<global statement> -> <send statement>
<global statement> -> <sequence definition>

There are five kinds of global statement:

1. Global parameters set orchestra parameters such as sampling rate, control rate, and number of
input and output channels of sound

2. Global variable declarations define global variables which can be shared by multiple
instruments.

3. Route statements describe the routing of instrument outputs onto busses.

4. Send statements describe the sending of busses to effects instruments.

5. Sequence definitions describe the sequencing of instruments by the run-time scheduler.

5.4.5.2 Global parameter

5.4.5.2.1 srate parameter

<global parameter> -> srate <int>;

The srate global parameter specifies the audio sampling rate of the orchestra. The decoding process shall
create audio internally at this sampling rate. It is not permissible to simplify orchestra complexity or
account for terminal capability by generating audio internally at other sampling rates, for to do so may have
seriously detrimental effects on certain processing elements of the orchestra.

The srate parameter shall be an integer value between 4000 and 96000 inclusive, specifying the audio
sampling rate in Hz. If the srate parameter is not provided in an orchestra, the default shall be the fastest of
the audio signals provided as input (see Subclause 5.11). If the sampling rate is not provided, and there are
no input audio signals, the default sampling rate shall be 32000 Hz.

5.4.5.2.2 krate parameter

<global parameter> -> krate <int>;

The krate global parameter specifies the control rate of the orchestra. The decoding process shall execute
k-rate processing internally at this rate. It is not permissible to simplify orchestra complexity or account for
terminal capability by executing k-rate processing at other rates, unless it can be determined that to do so
will have no effect on orchestra output. In this case, “no effect” means that the resulting output of the
orchestra is sample-by-sample identical to the output created if the control rate is not altered.

The krate parameter shall be an integer value between 1 and the sampling rate inclusive, specifying the
control rate in Hz. If the krate parameter is not provided in an orchestra, the default control rate shall be
100 Hz.

If the control rate as determined by the previous paragraph is not an even divisor of the sampling rate, then
the control rate is the next larger integer which does evenly divide the sampling rate. The control period of

SAOL syntax and semantics Global block Global variable declaration

37 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

the orchestra is the number of samples, or amount of time represented by these samples, in one control
cycle.

5.4.5.2.3 inchannels parameter

<global parameter> -> inchannels <int>;

The inchannels global parameter specifies the number of input channels to process. If there are fewer than
this many audio channels provided as input sources, the additional channels shall be set to continuous zero-
valued signals. If there are more than this many audio channels provided as input sources, the extra
channels are ignored.

If the inchannels parameter is not provided in an orchestra, the default shall be the sum of the numbers of
channels provided by the input sources (see Subclause 5.11). If there are no input sources provided, the
value shall be 0.

5.4.5.2.4 outchannels parameter

<global parameter> -> outchannels <int>;

The outchannels global parameter specifies the number of output channels of sound to produce. The run-
time decoding process shall produce and render this number of channels internally. It is not permissible to
simplify orchestra complexity or account for terminal capability by producing fewer channels.

If the outchannels parameter is not provided in an orchestra, the default shall be one channel.

5.4.5.3 Global variable declaration

5.4.5.3.1 Syntactic form

<global variable declaration> -> ivar <namelist> ;
<global variable declaration> -> ksig <namelist> ;
<global variable declaration> -> <table declaration> ;

Global variable declarations declare variables which may be shared and accessed by all instruments and by
a SASL score. Only ivar and ksig type variables, as well as wavetables, may be declared globally. A
global variable declaration is either a table definition, or an allowed type name followed by a list of name
declarations.

A global name declaration specifies that a name token shall be created and space equal to one signal value
allocated for variable storage in the global context. A global array declaration specifies that a name token
shall be created and space equal to the specified number of signal values allocated in the global context.

5.4.5.3.2 Signal variables

<namelist> -> <name>, <namelist>
<namelist> -> <name>

A namelist is a sequence of one or more name declarations.

SAOL syntax and semantics Global block Global variable declaration

38 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

<name> -> <ident>
<name> -> <ident>[<array length>]

<array length> -> <int>
<array length> -> inchannels
<array length> -> outchannels

A name declaration is an identifier (see Subclause 5.4.2.2), or an array declaration. For an array
declaration, the parameter shall be either an integer strictly greater than 0, or one of the tokens inchannels
or outchannels. If the latter, the array length shall be the same as the number of input channels or output
channels to the instrument, respectively, as described in Subclause 5.4.5.2. It is illegal to use the token
inchannels if the number of input channels to the instrument is 0.

Not every identifier may be used as a variable name; in particular, the reserved words listed in Subclause
5.4.8, the standard names listed in Subclause 5.4.6.8, the names of the core opcodes listed in Subclause 5.5,
and the names of the core wavetable generators listed in Subclause 5.6 shall not be declared as variable
names.

5.4.5.3.3 Wavetable declarations

<table declaration> -> table <ident> (<ident> , <expr> [, <expr list>]) ;
<expr> as defined in Subclause 5.4.6.7.
<expr list> as defined in Subclause 5.4.6.6.1.

Wavetables are structures of memory allocated for the typical purpose of allowing rapid oscillation,
looping, and playback. The wavetable declaration associates a name (the first identifier) with a wavetable
created by a core wavetable generator referenced by the second identifier. It is a syntax error if the second
identifier is not one of the core wavetable generators named in Subclause 5.6. The first expression in the
comma-delimited parameter sequence is termed the size expression; the remaining zero or more expressions
comprise the wavetable parameter list.

The semantics of the size expression and wavetable parameter list are determined by the particular core
wavetable generator, see Subclause 5.6. Any expression which is i-rate (see Subclause 5.4.6.7.2) is legal as
part of the table parameter list; in particular, reference to i-rate global variables is allowed (their values may
be set by the special instrument startup). Each expression must be single-valued, except in the case of the
concat generator (Subclause 5.6.16), in which case the expressions must be table references. The order of
creation of wavetables is non-deterministic; it is not recommended for calls to the tableread() opcode to
occur in the table parameter expressions, and to do so gives unspecified results.

A global wavetable may be referenced by a wavetable placeholder in any instrument or opcode. See
Subclause 5.4.6.5.4. Global wavetables shall be created and initialised with data at orchestra initialisation
time, immediately after the execution of the special instrument startup. They shall not be destroyed unless
they are explicitly destroyed or replaced by a table line in a SASL score.

To create a wavetable, first, the expression fields are evaluated in the order they appear in the syntax
according to the rules in Subclause 5.4.6.7. Then, the particular wavetable generator named in the second
identifier is executed; the normative semantics of each wavetable generator detail exactly how large a
wavetable shall be created, and which values placed in the wavetable, for each generator.

SAOL syntax and semantics Global block Route statement

39 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.5.4 Route statement
<route statement> -> route (<ident> , <identlist>) ;

<identlist> -> <ident> , <identlist>
<identlist> -> <ident>
<identlist> -> <NULL>

A route statement consists of a single identifier, which specifies a bus, and a sequence of one or more
instrument names, which specify instruments. The route statement specifies that the instruments listed do
not produce sound output directly, but instead their results are placed on the given bus. The output channels
from the instruments listed each are placed on a separate channel of the bus. Multiple route statements
onto the same bus indicate that the given instrument outputs should be summed on the bus. Multiple route
statements with differing numbers of channels referencing the same bus are illegal, unless each statement
has either n channels or 1 channel. In this case, each of the one-channel route statements places the same
signal on each channel of the bus, which is n channels wide.

There shall be at least one instrument name in the instrument list (the NULL Subclause in the grammar is
provided so that constructions appearing later may use the same production).

EXAMPLES

Assume that instruments a, b, and c produce one, two, and three channels of output, respectively.

1. The sequence

route(bus1, a, b);
route(bus1, c);

is legal and specifies a three-channel bus. The first bus channel contains the sum of the output of a and the
first channel of c; the second contains the sum of the first output channel of b and the second of c; and the
third contains the sum of the second channel of b and the third channel of c.

2. The sequence

route(bus1,b);
route(bus1,c);

is illegal since the statements refer different numbers of channels to the same bus.

3. The sequence

route(bus1,a,c);
route(bus1,a);
route(bus1,b,b);

is legal and specifies a four-channel bus. The first and third route statements each refer to four channels of
audio, and the second refers to one channel, which will be mapped to each of the four channels.

 The resulting channel values are as follows, using array notation to indicate the channel outputs from each
instrument:

Channel Value
1 a + a + b[1]

2 c[1] + a + b[2]

3 c[2] + a + b[1]

SAOL syntax and semantics Global block Send statement

40 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

4 c[3] + a + b[2]

It is illegal for a route statement to reference a bus which is not the special bus output_bus and which does
not occur in a send statement. See Subclause 5.4.5.5.

It is illegal for a route statement to refer to the special bus input_bus (see Subclause 5.11.2).

All instruments which are not referred to in route statements place their output on the special bus
output_bus, except for an effect instrument to which output_bus was sent (see Subclause 5.4.5.5). The
same rules for allowable channel combinations to the special bus output_bus apply as if the route
statements were explicit; these rules are implicit in the rules for the output statement, see Subclause
5.4.6.6.8.

5.4.5.5 Send statement
<send statement> -> send (<ident> ; <expr list> ; <identlist>);
<identlist> as defined in Subclause 5.4.5.4
<expr list> as defined in Subclause 5.4.6.6.1

The send statement creates an instrument instantiation, defines busses, and specifies that the referenced
instrument is used as an effects processor for those busses.

All busses in the orchestra are defined by using send statements. It is illegal for a statement referencing a
bus to refer to a bus which is not defined in a send statement. The exception is the special bus output_bus
which is always defined.

The identifier in the send statement references an instrument which will be used as a bus-processing
instrument, also called effect instrument. There is no syntactic distinction between effect instruments and
other instruments. The identifier list references one or more busses which shall be made available to the
effect instrument through its input standard name, as follows:

The first n0 channels of input, channels 0 through n0-1 are the n0 channels of the first referenced bus;
Channels n0 through n0+n1-1 of input are the n1 channels of the second bus,
and so forth, with a total of n0 + n1 + … + nk channels.

In addition, the grouping of busses in the input array shall be made available to the effect instrument
through its inGroup standard name, as follows:

The first n0 values of inGroup have the value 1;
Channels n0 through n0+n1-1 of inGroup have the value 2,
and so forth, through n0 + n1 + … + nk, with the last nk having the value k.

The expression list is a list of zero or more i-rate expressions which are provided to the effect instrument as
its parameter fields. Any expression which is i-rate (see Subclause 5.4.6.7.2) is legal as part of this list; in
particular, reference to i-rate global variables is allowed. The number of expressions provided shall match
the number of parameter fields defined in the instrument declaration; otherwise, it is a syntax error.

The effect instrument referred to in a send statement shall be instantiated no later than immediately after the
first instantiation of an instrument which either is routed to a bus which is sent to the effect instrument or
refers to the bus in an outbus or sbsynth statement. These instrument instantiations shall remain in effect
until the orchestra synthesis process terminates. One instrument instantiation shall be created for each send
statement in the orchestra. If such an instrument instantiation utilises the turnoff statement, the
instantiation is destroyed (and sound is no longer routed to it). No other changes are made in the orchestra.

SAOL syntax and semantics Global block Sequence specification

41 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Any bus may be routed to more than one effect instrument, except for the special bus output_bus. The
special bus output_bus represents the second-to-finalmost processing of a sound stream; it may only be
sent to at most one effect instrument, and it is a syntax error if that instrument is itself routed or makes use
of the outbus statement. If output_bus is not sent to an instrument, it is turned into sound at the end of an
orchestra cycle (see Subclause 5.3.3.3); if output_bus is sent to an instrument, the output of that instrument
is turned into sound at the end of an orchestra pass. This instrument is not permitted to use the turnoff
statement.

At least one bus name shall be provided in the send instruction.

5.4.5.6 Sequence specification
<sequence specification> -> sequence (<identlist>) ;
<identlist> as defined in Subclause 5.4.5.4.

The sequence statement allows the specification of the ordering of execution of instrument instantiations by
the run-time scheduler. The identlist references a list of instruments which describes a partial ordering on
the set of instruments. If instrument a and instrument b are referenced in the same sequence statement with
a preceding b, then instantiations of instrument a shall be executed strictly before instantiations of
instrument b.

There are several default sequence rules:

1. The special instrument startup is instantiated and the instantiation executed at the i-rate at the
very beginning of the orchestra.

2. Any instrument instances corresponding to the startup instrument are executed first in a
particular orchestra cycle.

3. If output_bus is sent to an instrument, the instrument instantiation corresponding to that send
statement is the last instantiation executed in the orchestra cycle.

4. For each instrument routed to a bus which is sent to an effect instrument, instantiations of the
routed instrument are executed before instantiations of the effect instrument. If loops are created
using route and send statements, the ordering is resolved syntactically: whichever send statement
occurs latest, that instrument instantiation is executed latest.

Default rules 2, 3, and 4 may be overridden by use of the sequence statement. Rule 1 cannot be overridden.

It is a syntax error if explicit sequence statements create loops in ordering. Any send statements which are
the “backward” part of an implicit send loop have no effect.

If the sequence of two instruments is not defined by the default or explicit sequence rules, their
instantiations may be executed in any order or in parallel.

It is not possible to specify the ordering of multiple instantiations of the same instrument; these
instantiations can be run in any order or in parallel.

EXAMPLES

An orchestra consists of five instruments, a, b, c, d, and e.

1. The following code fragment

SAOL syntax and semantics Instrument definition Syntactic form

42 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

route(bus1, a, b);
send(c; ; bus1);

is legal and specifies (using the default sequencing rules) that instantiations of instruments a and b shall be
executed strictly before instantiations of instrument c. This ordering applies to all instantiations of
instrument c, not only to the one corresponding to the send statement. No ordering is specified between
instruments a and b.

2. The following code fragment

route(bus1, a, b);
send(c; ; bus1);
sequence(c,a);
send(d; ; bus1);

is legal and specifies that instantiations of instrument b
shall be executed first, followed by instantiations of
instrument c, followed by instantiations of instrument a,
followed by instances of instrument d. The ordering of b and c, and a and b with d, follows from default
rule 3; the placement of instrument c follows from the explicit sequence statement, which overrides default
rule 3. Due to this ordering, the output samples of instrument a are not provided to instrument c (they get
put on the bus “too late”), and however many channels of output this represents are set to 0 in instrument c.
The output samples of instrument a are provided to instrument d.

3. The following code fragment

sequence(a,b);
sequence(b,c,d);
sequence(c,e);
sequence(e,a);

is illegal, as it contains an explicit loop in sequencing.

4. The following code fragment

route(bus1, a);
send(b; ; bus1);
route(bus2, b);
send(a; ; bus2);

is legal, and specifies that instantiations of instrument b
are executed first, followed by instantiations of
instrument a. There is an implicit loop here which is resolved syntactically as described in default rule 3.
Due to this ordering, the output values of instrument a are not provided to instrument b. Note that for
deciding sequencing, only the order of send statements matters, not the order of route statements.

5.4.6 Instrument definition

5.4.6.1 Syntactic form
<instrument definition> -> instr <ident> (<identlist>) [preset <int>] [channel <int>] {

 <instr variable declarations>
 <block> }

AB

C D

Bus1

Bus1
Bus2

B A Send instances

SAOL syntax and semantics Instrument definition Instrument name

43 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

An instrument definition has several elements. In order, they are

1. An identifier which defines the name of the instrument,

2. A list of zero or more identifiers which define names for the parameter fields, also called
pfields, of the instrument,

3. An optional preset value for specifying a MIDI preset mapping,

4. An optional channel value for specifying a MIDI channel mapping,

5. A list of zero or more instrument variable declarations, and

6. A block of statements defining the executable functionality of the instrument.

5.4.6.2 Instrument name
Any identifier may serve as the instrument name except that the instrument name shall not be a reserved
word (see Subclause 5.4.9), the name of a core opcode (see Subclause 5.5), or the name of a core wavetable
generator (see Subclause 5.6). An instrument name may be the same as a variable in local or global scope;
there is no ambiguity so created, since the contexts in which instrument names may occur are very
restricted.

No two instruments or opcodes in an orchestra shall have the same name.

5.4.6.3 Parameter fields
<identlist> -> as given in Subclause 5.4.5.4

The parameter fields, also called pfields, of the instrument, are the interface through which the instrument is
instantiated. In the instrument code, the pfields have the rate semantics of i-rate local variables. Their
values shall be set on instrument instantiation, before the creation of local variables, with the appropriate
values as given in the score line, score event, MIDI event, send statement, or instr statement corresponding
to the instrument instantiation.

5.4.6.4 Preset and channel tags

5.4.6.4.1 Preset tag
The preset tag specifies the preset number of the instrument. When MIDI program change events arrive in
a MIDI stream or MIDI file controlling the orchestra, the program change numbers refer to the preset tags
given to the various instruments. No more than one instrument may have the same preset number; if
multiple instruments in an orchestra specify the same preset tag, the one occurring syntactically last is
assigned that preset number. If a preset tag is not associated with a particular instrument, then that
instrument has no preset number and cannot be referenced with a program change.

Preset values are fixed and do not change throughout an orchestra synthesis process.

See Subclause 5.10 for more normative semantics on MIDI control of orchestras

SAOL syntax and semantics Instrument definition Instrument variable declarations

44 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.4.2 Channel tag
The channel tag specifies the channel assignment of the instrument. When MIDI instructions arrive in a
MIDI stream or MIDI file controlling the orchestra, the channel numbers refer to all instruments with the
given channel assignment. When continuous control instructions arrive in a MIDI stream or MIDI file, the
control instructions refer to all instrument instantiations created from instruments with the given channel
assignment. Zero or more instruments may have the same channel value. If a channel tag is not associated
with a particular instrument, then that instrument is on channel 1 by default.

Channel values may be changed with the MIDI program change instruction.

See Subclause 5.10 for more normative semantics on MIDI control of orchestras.

5.4.6.5 Instrument variable declarations

5.4.6.5.1 Syntactic form
<instr variable declarations> -> <instr variable declarations> <instr variable declaration>
<instr variable declarations> -> <NULL>

<instr variable declaration> -> [<sharing tag>] ivar <namelist> ;
<instr variable declaration> -> [<sharing tag>] ksig <namelist> ;
<instr variable declaration> -> asig <namelist> ;
<instr variable declaration> -> <table declaration> ;
<instr variable declaration> -> <sharing tag> table <identlist> ;
<instr variable declaration> -> oparray <ident> [<array length>] ;
<instr variable declaration> -> <tablemap declaration> ;

<sharing tag> -> imports
<sharing tag> -> exports
<sharing tag> -> imports exports

<tablemap declaration> -> tablemap <ident> (<identlist>) ;

<array length> and <namelist> as defined in Subclause 5.4.5.3.2
<table declaration> as defined in Subclause 5.4.5.3.3
<identlist> as defined in Subclause 5.4.5.4

Instrument variable declarations declare variables which may be used within the scope of an instrument.
Any rate type variable, as well as wavetables, tablemaps, and wavetable placeholders, may be declared in an
instrument. An instrument variable declaration is either a wavetable declaration, or an type name, possibly
preceded by a sharing tag followed by a list of name declarations, or a sharing tag followed by the token
table followed by a list of identifiers referencing global or future wavetables, or an opcode-array
declaration, or a table-map definition.

5.4.6.5.2 Wavetable declaration
The syntax and semantics of Subclause 5.4.5.3.3 hold for instrument local wavetables, with the following
exceptions and additions:

An instrument local wavetable is available only within the local scope of a single instrument instantiation.
As such, it shall be created and initialised with data at the instrument instantiation time, immediately after
the pfield values are assigned from the calling parameters. It may be deleted and freed when that instrument
instantiation terminates.

SAOL syntax and semantics Instrument definition Instrument variable declarations

45 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Not every expression which is i-rate is legal as part of the table parameter list. Reference to constants,
pfields, and i-rate standard names is allowed. However, the instrument wavetable initialisation shall occur
before the initialisation pass through the instrument code, and so reference to local i-rate variables is
prohibited.

5.4.6.5.3 Signal variables
The syntax and semantics of Subclause 5.4.5.3.2 hold for instrument local signal variables, with the
following exceptions and additions:

A local name declaration specifies that a name token shall be created and space equal to one signal value
allocated for variable storage in each instrument instantiation associated with the instrument definition. A
local array declaration specifies that a name token shall be created and space equal to the specified number
of signal values allocated in each instrument instantiation associated with the instrument definition.

The sharing tags imports and/or exports may be used with local i-rate or k-rate signal variable declaration.
They shall not be used with a-rate variables. If the imports tag is used, then the variable value shall be
replaced with the value of the global variable of the same name at instrument initialisation time (for i-rate
signal variables) or at the beginning of each control pass (for k-rate signal variables). The imports tag may
be used for a local k-rate signal variable even if there is no global variable of the same name, in which case
it is an indication that the k-rate variable so tagged may be modified with control lines in a SASL score.
The imports tag shall not be used for local i-rate signal variables when there is no global variable of the
same name.

If the exports tag is used, then the value of the global variable of the same name shall be replaced with the
value of the local signal variable after instrument initialisation (for i-rate signal variables) or at the end of
each control pass (for k-rate signal variables). The exports tag shall not be used if there is no global
variable of the same name.

If, for a particular signal variable, the imports and/or exports tags are used, and there is a global variable
with the same name, then the array width of the local and global variables must be the same.

If, for a particular local variable, the imports tag is not used, then its value is set to 0 before instrument
initialisation.

If, for a particular local variable declaration, the imports and exports tags are not used, even if there is a
global variable of the same name, there is no semantic relationship between the two variables. The
construction is syntactically legal.

5.4.6.5.4 Wavetable placeholder
The sharing tags imports and exports may be used to reference global and future wavetables. In this case,
the local declaration of the table reference is termed a wavetable placeholder. The wavetable placeholder
definition does not contain a full wavetable definition, but only a reference to a global or future wavetable
name.

If only the imports tag is used, and there is a global wavetable with the same name, then at instrument
instantiation time, the current contents of the global wavetable are copied into a local wavetable with that
name. If the contents of the global wavetable are modified after a particular instrument instantiation
referencing that global wavetable is created, the new contents of the global wavetable shall not be copied
into the instrument instantiation. Also, if the contents of the local wavetable are modified, these changes
shall not be reflected in the global wavetable.

SAOL syntax and semantics Instrument definition Instrument variable declarations

46 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If the imports and exports tags are both used, and there is a global wavetable with the same name, then at
instrument instantiation time and at the beginning of each control pass, the current contents of the global
wavetable are made available to a local wavetable with that name. “Made available” in the preceding
sentence means that access may be either in the form of copying data from one wavetable to another or by
pointer reference to the same memory space, or by any equivalent implementation. Also, at the end of
instrument instantiation and at the end of each control pass, the current contents of the local wavetable are
similarly made available to the global wavetable with the same name.

It is not permissible to use the exports tag alone for a wavetable placeholder.

If the imports tag is used, and there is no global wavetable with the same name, then the reference is to a
future wavetable which will be provided in the bitstream. When the instrument is instantiated, the contents
of the most recent wavetable provided in the bitstream with the same name shall be copied into the local
wavetable. If no wavetable has been provided in the bitstream with the same name as the wavetable
placeholder at the time of instrument instantiation, then the bitstream is invalid.

It is not permissible to use the exports tag if there is no global wavetable with the same name.

5.4.6.5.5 Opcode array declaration
An opcode array, or “oparray” declaration, declares several opcode states for a particular opcode that may
be used by the current instrument or opcode. By declaring the states in this manner, access to them is
available through the oparray expression, see Subclause 5.4.6.7.7. The identifier in the declaration shall be
the name of a core opcode or an user-defined opcode declared elsewhere in the orchestra. The array length
declares how many states are available for access to this oparray in the local code block; it shall be an
integer value or the special tag inchannels or outchannels.

It is a syntax error if more than one oparray declaration references the same opcode name in a single
instrument or opcode.

5.4.6.5.6 Table map definition

<table map definition> -> tablemap <ident> (<identlist>)

<identlist> as defined in Subclause 5.4.5.4.

A table map is a data structure allowing indirect reference of wavetables via array notation. The identifier
names the table map; it shall not be the same as the name of any other signal variable or other restricted
word in the local scope. The identifier list gives a number of wavetable names for use with the table map.
Each of these names shall correspond to a wavetable definition or wavetable placeholder within the current
scope. The tablemap declaration may come before, after, or in the midst of wavetable declarations and
wavetable placeholders in the instrument. All wavetables in the scope of the instrument may be referenced
in a tablemap, regardless of the syntactic placement of the tablemap.

When the tablemap name is used in an array-reference expression (see Subclause 5.4.6.7.5), the index of the
expression determines to which of the wavetables in the list the expression refers. The first wavetable in the
list is number 0, the second number 1, and so on.

EXAMPLE

For the following declarations

SAOL syntax and semantics Instrument definition Block of code statements

47 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 table t1(harm,2048,1);
 imports table t2;
 table t3(random,32,1);

 tablemap tmap(t1,t2,t3,t2);
 ivar i,x,y,z;

the following two code blocks are identical in semantics:

BLOCK 1

 i = 3;
 x = tableread(tmap[0],4);
 y = tableread(tmap[i],3);
 z = tableread(tmap[i > 4 ? 1 : 2],5);

BLOCK 2

 x = tableread(t1,4);
 y = tableread(t2,3);
 z = tableread(t3,5);

Note that, like table references, array expressions using tablemaps may only occur in the context of an
opcode or oparray call to an opcode accepting a wavetable reference.

5.4.6.6 Block of code statements

5.4.6.6.1 Syntactic form
<block> -> <statement> [<block>]
<block> -> <NULL>

<statement> -> <lvalue> = <expr> ;
<statement> -> <expr> ;
<statement> -> if (<expr>) { <block> }
<statement> -> if (<expr>) { <block> } else { <block> }
<statement> -> while (<expr>) { <block> }
<statement> -> instr <ident> (<expr list>) ;
<statement> -> output (<expr list>) ;
<statement> -> sbsynth (<expr list> ; <identlist> ; <expr list>) ;
<statement> -> spatialize (<expr list >) ;
<statement> -> outbus (<ident> , <expr list>) ;
<statement> -> extend (<expr>) ;
<statement> -> turnoff ;

<expr list> -> <expr> [, <expr list>]
<expr list> -> <NULL>

<lvalue> as given in Subclause 5.4.6.6.2.
 <expr> as given in Subclause 5.4.6.7.

A block is a sequence of zero or more statements. A statement shall take one of 12 forms, which are
enumerated and described in the subsequent Subclauses. Each statement has rate-semantics rules governing
the rate of the statement, the rate contexts in which it is allowable, and the times at which various
subcomponents shall be executed.

SAOL syntax and semantics Instrument definition Block of code statements

48 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

To execute a block of statements at a particular rate, the statements within the block shall be executed, each
at that rate, in such order as to produce equivalent results to executing the statements sequentially in linear
order, according to the semantics below governing each type of statement

5.4.6.6.2 Assignment

<statement> -> <lvalue> = <expr> ;

<lvalue> -> <ident>
<lvalue> -> <ident> [<expr>]

<expr> as given in Subclause 5.4.6.7.

An assignment statement calculates the value of an expression and changes the value of a signal variable or
variables to match that value.

The lvalue, or left-hand-side value, denotes the signal variable or variables whose values are to be changed.
An lvalue may be a local variable name, in which case the denotation is to the storage space associated with
that name. An lvalue may also be a local array name, in which case the denotation is to the entire array
storage space. An lvalue may also be a single element of a local array denoted by indexing a local array
name with an expression. An lvalue shall not be a table reference or tablemap expression.

If the lvalue denotes an entire array, the right-hand-side expression of the assignment shall denote an array-
valued expression with the same array length, or a single value, otherwise the construction is syntactically
illegal.

If the lvalue denotes a single value, the right-hand-side expression of the assignment shall denote a single
value, otherwise the construction is syntactically illegal.

The rate of the lvalue is the rate of the signal variable, if there is no indexing expression, or the faster of the
rate of the signal array denoted by the indexing expression and the rate of the indexing expression, if there
is an indexing expression.

The rate of the right-hand side is the rate of the right-hand-side expression.

The rate of the statement is the rate of the lvalue, however, the statement is illegal if the rate of the right-
hand side is faster than the rate of the lvalue.

The assignment shall be performed as follows:

At every pass through the statement occurring at lesser or equal rate to the rate of the assignment, the right-
hand side expression shall be evaluated. At each pass equal in rate to the lvalue, the storage space denoted
by the lvalue shall be updated to be equal to the value of the right-hand expression. If the lvalue denotes an
entire array, and the right-hand-side expression a single value, then each of the values of each of the
elements of the array shall be changed to the single right-hand-side value.

5.4.6.6.3 Null assignment

<statement> -> <expr> ;

A null assignment contains only an expression; it is provided so that opcodes which do not have useful
return values need not be used in the context of an assignment to a dummy variable.

SAOL syntax and semantics Instrument definition Block of code statements

49 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The rate of the statement is the rate of the expression. The expression may be single-valued or array-
valued; it shall not be a table reference.

The null assignment shall be performed as follows:

At every pass through the statement occurring at lesser or equal rate to the rate of the statement, the
expression shall be evaluated.

5.4.6.6.4 If

<statement> -> if (<expr>) { <block> }

An if statement allows conditional evaluation of a block of code. The expression which is tested in the if
statement is termed the guard expression.

The rate of the statement is the rate of the guard expression, or the rate of the fastest statement in the
guarded code block, whichever is faster.

It is not permissible for the block of code governed by the if statement to contain statements slower than the
guard expression. It is further not permissible for any of the statements in the governed block of code to
contain calls to opcodes which would be executed slower than the guard expression. The guard expression
shall be a single-valued expression.

EXAMPLE

The following code fragment is illegal:

 asig a;
 ksig k;

 a = 0; while (a < 20) {
 k = kline(...);
 }

The example is illegal because the kline assignment statement is slower than the guard a < 20. Even if the
assignment were to an a-rate variable (“a2 = kline(...)”), thus making the assignment statement an a-rate
statement, the example would be illegal, because the kline opcode itself is slower than the guard expression.

The if statement shall be executed as follows:

At every pass through the statement occurring at equal rate to the rate of the statement, the guard expression
shall be evaluated. If the guard statement evaluates to any non-zero value in a particular pass, then the
block of code shall be evaluated at the rate corresponding to that pass.

5.4.6.6.5 Else

<statement> -> if (<expr>) { <block> } else { <block> }

An else statement allows disjunctive evaluation of two blocks of code. The expression which is tested in
the else statement is termed the guard expression.

The rate of the statement is the rate of the guard expression, or the rate of the fastest statement in the first
guarded block of code, or the rate of the fastest statement in the second guarded block of code, whichever is
fastest.

SAOL syntax and semantics Instrument definition Block of code statements

50 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

It is not permissible for the blocks of code governed by the else statement to contain statements slower than
the guard expression. It is further not permissible for any of the statements in the governed blocks of code
to contain calls to opcodes which would be executed slower than the guard expression. The guard
expression shall be a single-valued expression.

The else statement shall be executed as follows:

At every pass through the statement occurring at equal rate to the rate of the statement, the guard expression
shall be evaluated. If the guard expression evaluates to any non-zero value in a particular pass, then the first
guarded block of code shall be at the rate corresponding to that pass. If the guard statement evaluates to
zero in a particular pass, then each statement in the second guarded block of code shall be so evaluated.

5.4.6.6.6 While

<statement> -> while (<expr>) { <block> }

The while statement allows a block of code to be conditionally evaluated several times in a single rate pass.
The expression which is tested in the while statement is termed the guard expression.

The rate of the while statement is the rate of the guard expression.

It is not permissible for the block of code governed by the while statement to contain statements which run
at a rate other than the rate of the guard expression. It is further not permissible for any of the statements in
the governed block of code to contain calls to opcodes which would be executed at a rate other than the rate
of the guard expression. The guard expression shall be a single-valued expression.

The while statement shall be executed as follows:

At every pass through the statement occurring at equal rate to the rate of the statement, the guard expression
shall be evaluated. If the guard expression evaluates to any non-zero value in a particular pass, then each
statement in the guarded block of code shall be evaluated according to the particular rules for that
statement, and then the guard expression re-evaluated, iterating until the guard expression evaluates to zero.

5.4.6.6.7 Instr

<statement> -> instr <ident> (<expr list>) ;

The instr statement allows an instrument instantiation to dynamically create other instrument instantiations,
for layering or synthetic-performance techniques. It shall consist of an identifier referring to an instrument
defined in the current orchestra, a duration, and a list of expressions defining parameters to pass to the
referenced instrument.

It is a syntax error if the number of expressions in the expression list is not one greater than the number of
pfields accepted by the referenced instrument (the first expression is the duration). Each expression in the
expression list shall be a single-valued expression.

The rate of the instr statement is the rate of the fastest expression in the expression list.

It is not permissible for the rate of the instr statement to be a-rate.

The instr statement shall be executed as follows:

At every pass through the statement occurring at lesser or equal rate to the rate of the statement, each of the
expressions in the expression list is evaluated. Then, at every pass through the statement occurring at equal

SAOL syntax and semantics Instrument definition Block of code statements

51 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

rate to the rate of the statement, a new instrument instantiation is created, where the duration of the new
instantiation is the value of the first expression in the expression list, and the values of the instrument p-
fields in the new instantiation are set to the values of the remaining expressions.

The i-rate pass through the new instrument instantiation shall be executed immediately upon its creation,
before any more statements from the block of code containing the instr statement are executed. However,
any changes to global i-rate variables made in the new instance during its i-rate pass are not respected in this
instrument (the “caller”). i-rate variables imported from the global context are set only during the
initialisation pass of each instance, and never change afterward. The first k-rate and a-rate passes through
the new instrument instantation shall be executed as appropriate to the sequencing relation between the
instantiating and instantiated instruments; that is, if the new instrument is sequenced later than the
instantiating instrument, the new instantiation shall be executed at some later time in the same orchestra
pass, but if the new instrument is sequenced earlier than the instantiating instrument, then the new
instantiation shall not be executed in k-time or a-time until the subsequent orchestra pass.

5.4.6.6.8 Output

<statement> -> output (<expr list>) ;

The output statement creates audio output from the instrument. This output does not get turned directly
into sound, but rather gets buffered either on one or more busses based on instructions given in route
statements (Subclause 5.4.5.4) or on the special bus output_bus by default. However, if the current
instrument instantiation is the one created with a send statement referencing the special bus output_bus,
then the output of the current instantiation, created by summing its calls to output, may be turned directly
into sound.

The expression list shall contain at least one expression.

The rate of the output statement is a-rate.

All statements within a orchestra which reference the same bus, whether through explicit sends, calls to
outbus or sbsynth, or by default routing to the special bus output_bus, shall have compatible numbers of
expression parameters representing output channels. “Compatible” means that if any calls to output for a
particular bus reference more than one expression parameter, then all other calls to output referencing this
bus shall have either the same number of expression parameters, or else only a single expression parameter.
In addition, the number of channels of the special bus output_bus shall be the same as the global
outchannels parameter and uses of output by instrument instances which are implicitly or explicitly routed
to output_bus shall be compatible with this number of channels.

The output statement is executed as follows:

At each k-rate pass through the instrument, an output buffer, with number of channels determined by the
compatibility rules above, shall be cleared to zero values. At every pass through the statement at any rate,
the expression parameters shall each be evaluated. Then, if the pass is at a-rate, the expression parameter
values shall be placed in the output buffer: if the output statement has more than one parameter expression,
then the value of each parameter shall be added to the current value of the output buffer in the
corresponding channel. If the output statement has only one parameter expression, then the value of that
expression shall be added to the current value of the output buffer in each channel.

The expression parameters to the output statement may be array-valued, in which the mapping described in
the preceding paragraph is not from expressions to buffer channels, but from array value channels to buffer
channels.

EXAMPLE

SAOL syntax and semantics Instrument definition Block of code statements

52 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The following code fragment

asig a[2], b;

. . .

output(a,b);
output(a[1],b,b);
output(b);

is legal and describes an instrument which outputs three channels of sound. The first channel of output
contains the value a[0] + a[1] + b, the second a[1] + b + b, and the third b + b + b.

After each a-rate pass through the instrument instantiation during a particular orchestra pass, the values in
the output buffer shall be added channel-by-channel to the current values of the bus or busses referenced by
the route expression or expressions which also reference this instrument. If there are no such route
statements, the values in the output buffer shall be added channel-by-channel to the current values of the
special bus output_bus. If this is the instrument instantiation created by referencing the special bus
output_bus in a send statement, then the preceding two sentences do not hold, and instead the values in the
output buffer are the output of the orchestra.

5.4.6.6.9 Wavetable bank synthesis (sbsynth)

<statement> -> sbsynth (<expr list> ; <identlist> ; <expr list>) ;

The sbsynth statement allows the use of the standardised bank synthesis procedure (see Subclause 5.9)
within a SAOL instrument. There are three parameter lists to the sbsynth statement:

1. The first list shall be a list of three expressions, with the first expression corresponding to the
sample bank number, the second to the MIDI pitch, and the third to the MIDI velocity. Each
expression shall be single-valued.

2. The second list shall be a list of one, two, or three identifiers referencing busses which are
defined in send statements, Subclause 5.4.5.5. The first bus is the stereo output bus, and the
sbsynth statement contains two parameter expressions to this bus for the purposes of the
compatibility rules in Subclause 5.4.6.6.8. The second bus, if given, is the mono reverb bus,
and the sbsynth statement contains one parameter expression to this bus for the purposes of
the compatibility rules in Subclause 5.4.6.6.8. The third bus, if given, is the mono chorus bus,
and the sbsynth statement contains one parameter expression to this bus for the purposes of
the compatibility rules in Subclause 5.4.6.6.8. It is a syntax error if busses are given in this
list but are not defined in send statements in the global orchestra block.

3. The third list shall be a list of zero, one, two, or three expressions. The first expression, if
given, corresponds to the MIDI bank number. If there are no expressions in the list, the MIDI
bank number is the default value 1. The second expression, if given, corresponds to the MIDI
channel number. If there are fewer than two expressions in the list, the MIDI channel number
is the default value given by the instrument channel number (Subclause 5.4.6.4.2). The third
expression, if given, corresponds to the MIDI preset number. If there are fewer than three
expressions in the list, the MIDI preset number is the default value given by the instrument
preset value (Subclause 5.4.6.4.1), if there is one, or else the default value 1. Each expression
given shall be single-valued.

The rate of the sbsynth statement is a-rate.

The sbsynth statement shall be executed as follows:

SAOL syntax and semantics Instrument definition Block of code statements

53 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

At each pass through the instrument, the expressions in the first list, and any expressions in the third list,
shall be evaluated. Then, at each pass through the instrument at a-rate, the wavetable bank synthesis
procedure described in Subclause 5.9 shall be executed using the six parameters as defined in Subclauses
(1) and (3) of the numbered list in this Subclause. The output of the stereo output calculation in this
procedure shall be added to the first bus referenced in the second list; then, if there is a second bus
referenced in the second list, the output of the mono reverb calculation in this procedure shall be added to
it; then, if there is a third bus referenced in the second list, the output of the mono chorus calculation shall
be added to it.

The sbsynth statement shall not be used in an instrument which is the target of a send statement referencing
the special bus output_bus.

5.4.6.6.10 Spatialize

<statement> -> spatialize (<expr list >) ;

The spatialize statement allows instruments to produce spatialised sound, using non-normative methods
that are implementation-dependent.

The expression list shall contain four expressions. The second, third, and fourth shall not be a-rate
expressions. The first expression represents the audio signal to be spatialised; the second, the azimuth
(angle) from which the source sound should apparently come, measuring in radians clockwise from 0
azimuth directly in front of the listener; the third, the elevation angle from which the sound source should
apparently come, measuring in radians upward from 0 elevation on the listener’s horizontal place; and the
fourth, the distance from which the sound source should apparently come, measuring in metres from the
listener’s position. Each of the four expressions shall be single-valued.

The rate of the spatialize statement is a-rate.

The spatialize statement shall be executed as follows:

At each pass through the instrument, the expressions in the expression list shall be evaluated. Then, at each
pass through the instrument at a-rate, the sound signal in the first expression shall be presented to the
listener as though it has arrived from the azimuth, elevation, and distance given in the second, third, and
fourth expressions. No normative requirements are placed on this spatialisation capability, although
terminal implementors are encouraged to provide the maximum sophistication possible.

The sound produced via the spatialize statement is turned directly into orchestra output; it shall not be
affected by bus routings or further manipulation within the orchestra. If multiple calls to spatialize occur
within an orchestra, the various sounds so produced shall be mixed via simple summation after
spatialisation. Similarly, if both spatialised and non-spatialised sound is produced within an orchestra, the
final orchestra output of all non-spatialised sound shall be mixed via simple summation with the various
spatialised sounds for presentation. The sound produced via each spatialize statement shall have as many
channels as the global orchestra number of output channels (see Subclause 5.4.5.2.4) in order to enable this
mixing.

5.4.6.6.11 Outbus

<statement> -> outbus (<ident> , <expr list>) ;

The outbus statement allows instruments to place dynamically-calculated signals on busses. The identifier
parameter shall refer to the name of a bus defined with a send statement in the global block. The remaining
expressions represent signals to place on the bus.

SAOL syntax and semantics Instrument definition Block of code statements

54 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

It is a syntax error if there are no expressions in the expression list, or if the identifier does not refer to a bus
defined in the global block with a send statement. The number of expressions in the expression list shall be
compatible with other statements making reference to the same bus, as defined in Subclause 5.4.6.6.8.

The rate of the outbus statement is a-rate.

The outbus statement shall be executed as follows:

At each pass through the statement, the expression list shall be evaluated. Then, at each a-rate pass through
the statement, the expression values shall be added to the current values of the referenced bus. If there is
more than one expression in the expression list, then each expression value shall be added to the
corresponding channel of the referenced bus. If there is only one expression in the expression list, then the
value of that expression shall be added to each channel of the referenced bus.

The expressions in the expression list may be array-valued, in which case the semantics are analogous to
those in Subclause 5.4.6.6.8.

The outbus statement shall not be used in an instrument which is the target of a send statement referencing
the special bus output_bus.

5.4.6.6.12 Extend

<statement> -> extend (<expr>) ;

The extend statement allows an instrument instantiation to dynamically lengthen its duration.

The expression parameter shall not be a-rate. The expression shall be single-valued.

The rate of the extend statement is the rate of the expression parameter.

The extend statement shall be executed as follows:

At each pass through the statement at lesser or equal rate to the rate of the statement, the expression shall be
evaluated. Then, at each pass through the statement at the rate of the statement, the duration of the
instrument instantiation shall be extended by the amount of time, in seconds, given by the value of the
expression. That is, if the instrument instance had been previously scheduled to be terminated at time t,
then after a call to extend with an expression evaluating to s, the instrument instance shall be scheduled to
terminate at time t+s. If the instrument instance had no scheduled termination time (its duration was –1 on
instantiation), extend with an expression evaluating to s shall schedule termination of the instrument at time
T + s, where T is the current orchestra time.

NOTE

The parameter of extend is specified in seconds, not in beats. If it is desirable to have time-extension
dependant on tempo in a particular composition, the content author must enable this by rescaling the
parameter by the current value of tempo (Subclause 5.4.6.8.8).

extend may be called with a negative argument to shorten the duration of a note; if t+s < T (that is, if the
negatively extended duration has already been exceeded in the instantiation), then the statement acts as the
turnoff statement, see Subclause 5.4.6.6.13.

When the extend statement is called, the standard name dur shall not be updated to reflect the new
duration, but keeps the value of the original duration.

SAOL syntax and semantics Instrument definition Expressions

55 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.6.13 Turnoff

<statement> -> turnoff ;

The turnoff statement allows an instrument instantiation to dynamically decide to terminate itself.

The rate of the turnoff statement is k-rate.

The turnoff statement shall be executed as follows:

When the turnoff statement is reached at k-rate, the instrument instance shall be scheduled to terminate
after the following k-cycle; that is, if the current orchestra time is T and the k-pass duration k, the instrument
instantiation shall be scheduled to terminate at time T+k.

The turnoff statement shall not update the dur standard name.

The turnoff statement shall not be executed in an instrument instance which is created as the result of a
send statement referencing the special bus output_bus.

NOTE

turnoff does not destroy the instantiation immediately; the instantiation is executed for one more orchestra
pass, to allow the instrument time to examine the released variable. Instruments may call turnoff and then
“save” themselves on the subsequent k-cycle by calling extend.

5.4.6.7 Expressions

5.4.6.7.1 Syntactic form

<expr> -> <ident>
<expr> -> <number>
<expr> -> <int>
<expr> -> <ident> [<expr>]
<expr> -> <ident> (<expr list>)
<expr> -> <ident> [<expr>] (<expr list>)
<expr> -> <expr> ? <expr> : <expr>
<expr> -> <expr> <binop> <expr>
<expr> -> ! <expr>
<expr> -> - <expr>
<expr> -> (<expr>)

<binop>-> +
<binop>-> -
<binop>-> *
<binop>-> /
<binop>-> ==
<binop>-> >=
<binop>-> <=
<binop>-> !=
<binop>-> >
<binop>-> <

SAOL syntax and semantics Instrument definition Expressions

56 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

<binop>-> &&
<binop>-> ||

An expression can take one of several forms, the semantics of which are enumerated in the Subclauses
below. Each form has both rate semantics, which describe the rate of the expression in terms of the rates of
the subexpressions, and value semantics, which describe the value of the expression in terms of the values
of the subexpressions. The syntax above is ambiguous for many expressions; disambiguating precedence
rules are given in Subclause 5.4.6.7.14.

5.4.6.7.2 Properties of expressions
Each expression is conceptually labelled with two properties: its rate and its width. The rate of an
expression determines how fast the value of that expression might change; the width of an expression
determines how many channels of sound or other data are represented by the expression. In each expression
type, the rate and width of the expression are determined from the type of the expression, and perhaps from
the rate and width of the component subexpressions.

NOTE

Any name declared as an array is an array-valued variable regardless of its length. That is, a variable
declared as asig name[1] is not a single-valued variable.

5.4.6.7.3 Identifier

<expr> -> <ident>

An identifier expression denotes a storage location or locations which contain values stored in memory. It
is illegal to reference an identifier which is not declared in the local instrument or opcode scope, and which
is not a standard name (see Subclause 5.4.6.7.14).

The rate of an identifier expression is the rate type at which the identifier was declared, or is implicitly
declared in the case of standard names. The rate of a table identifier is i-rate.

If the identifier denotes a single-valued name (i.e., one which is not an array type), then the value of the
identifier expression is the value stored in memory associated with that identifier in the current scope, and
the width of the expression is 1.

If the identifier denotes an array-valued name, then the value of the identifier expression is the ordered
sequence of values stored in memory and associated with that identifier in the current scope, and the width
of the expression is the width of the array so denoted.

If the identifier denotes a table, then the value of the identifier expression is a reference to the table with the
given name. Table references may only appear in calls to opcodes. A table reference has width 1.

5.4.6.7.4 Constant value

<expr> -> <number>
<expr> -> <int>

A constant value expression denotes a single number.

The rate of a constant value expression is i-rate.

SAOL syntax and semantics Instrument definition Expressions

57 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The width of a constant value expression is 1.

The value of a constant expression is the value of the number denoted by the constant. The value of a
constant expression is always a floating-point value, whether the token or lexical expression denoting the
value was an integer or floating-point token or expression.

5.4.6.7.5 Array reference

<expr> -> <ident> [<expr>]

An array reference expression allows the selection of one value from an array of several. The identifier in
the array-reference syntax is termed the array name, and the expression the index expression. It is illegal to
use an identifier in an array reference which is neither declared in the local instrument or opcode scope as
an array, nor implicitly defined as an array-valued standard name or table map.

The index expression shall have width 1.

The rate of an array reference expression is the rate of the array name (which is the rate at which the array
name was declared explicitly or implicitly), or the rate of the index expression, whichever is faster.

The width of an array reference expression is 1.

If the referenced array is an array-valued signal variable, then the value of the array reference expression is
the value of that element of the sequence of values in the array storage corresponding to the value of the
indexing expression, where element 0 corresponds to the first value in the sequence. It is a run-time error if
the value of the indexing expression is less than 0, or equal to or greater than the declared size of the array.
If the indexing expression is not an integer, it is rounded to the nearest integer.

If the referenced array is a table map, then the value of the array reference expression is a reference to that
element of the sequence of tables corresponding to the value of the index expression, where element 0
corresponds to the first table in the sequence. It is a run-time error if the value of the indexing expression is
less than 0, or equal to or greater than the declared size of the table map. If the indexing expression is not
an integer, it is rounded to the nearest integer. Table references may only appear in calls to opcodes. See
also the example in Subclause 5.4.6.5.6.

NOTE

The syntax t[i], where t is a table rather than a table map, is illegal. The tableread core opcode is used to
directly access elements of a wavetable. See Subclause 5.5.6.

5.4.6.7.6 Opcode call

<expr> -> <ident> (<expr list>)

An opcode call expression allows the use of processing functionality encapsulated within an opcode.

The identifier is termed the opcode name, and the expression list the actual parameters of the opcode call
expression. It is illegal to use an identifier which is not the name of a core opcode and is also not the name
of a user-defined opcode declared elsewhere in the orchestra. For user-defined opcodes, the number of
actual parameters shall be the same as the number of formal parameters in the opcode definition. For core
opcodes without variable argument lists, the number of actual parameters required varies from opcode to
opcode; see Subclause 5.4.9. If a particular formal parameter in an opcode definition is an array, then the
corresponding actual parameter shall be an array-typed expression of equal width. If a particular formal

SAOL syntax and semantics Instrument definition Expressions

58 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

parameter in an opcode definition is a table, then the corresponding actual parameter shall be a table
reference.

If a particular formal parameter in an opcode definition is at a particular rate, then the corresponding actual
parameter expression shall not be at a faster rate.

The rate of the opcode call expression is determined according to the rules in Subclause Error! Reference
source not found..

The width of the opcode call expression is the number of channels provided in the return statements in the
opcode’s code block.

For calls to core opcodes (see Subclause 5.5), in the absence of normative language specifying otherwise
for a particular opcode, it is a syntax error if any of the following statements apply:

- there are fewer actual parameters in the opcode call than required formal parameters

- there are more actual parameters in the opcode call than required and optional formal
parameters, and the opcode definition does not include a varargs “...” Subclause

- a particular actual parameter expression is of faster rate than the corresponding formal
parameter, or than the varargs formal parameter if that is the correspondence

- a particular actual parameter expression is not single-valued, or is not table-valued when the
corresponding formal parameter specifies a table.

The context of the opcode call is restricted more than other expressions. When occurring within a block
subsidiary to a guarding statement (if, else, or while), opcode calls shall not have a rate slower than the rate
of the guarding expression (see Subclauses 5.4.6.6.4, 5.4.6.6.5, 5.4.6.6.6). A call to an opcode with a
particular name shall not occur within the code block of definition of that opcode, nor within the code
blocks of any of the opcodes called by that opcode, or any of the opcodes called by them, etc. That is,
recursive and mutually-recursive opcodes are prohibited.

To calculate the value of an opcode call expression referencing a user-defined opcode at a particular rate,
the values of the actual parameter expression shall be calculated in the order they appear in the expression
list. The values of the formal parameters within the opcode scope shall be set to the values of the
corresponding actual parameter expressions. If this is the first opcode call expression referencing this
opcode scope, opcode storage space shall be created to store local signal variables and wavetables, the local
signal variables set to 0, and the local wavetables created as discussed in Subclause 5.4.6.5.2. Any global
variables imported by the opcode at that rate shall be copied into the opcode storage space. The statement
block of the opcode shall be executed at the current rate. The value of the opcode call expression is the
value of the first return statement encountered when executing the opcode. The value of the opcode call
expression may be array-valued (if the expression in the return statement is). After the end of opcode
execution, any global variables exported by the opcode shall be copied into the global storage space.

NOTE

If an opcode changes and exports the value of a global variable which is imported by the calling instrument
or opcode, the change in the global variable is not reflected in the caller until the next orchestra pass.

If a particular actual parameter expression in an opcode call expression is an identifier or an array-reference
expression, then that parameter is a reference parameter in that call to that opcode. When the opcode
statement block is executed, the final value of the formal parameter associated with that actual parameter
shall be copied into the variable value denoted by the identifier or array-reference. This modification shall

SAOL syntax and semantics Instrument definition Expressions

59 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

happen immediately after (but not until) the termination of the statement block, before any other calculation
is done. Both single-value and array-value expressions may be reference parameters, but if an array-valued
expression is used, the associated formal parameter shall be an array of the same length.

To calculate the value of an opcode call expression referencing a core opcode at a particular rate, the values
of the actual parameter expressions shall be calculated in the order they appear in the expression list. Then,
the return value of the core opcode shall be calculated according to the rules for the particular opcode given
in Subclause 5.4.9.

NOTE

The variables declared within the scope of a user-defined opcode are static-valued; that is, they preserve
their values from call to call. The values of variables within the scope of a user-defined opcode are set to 0
before the opcode is called the first time. Each syntactically distinct call to an opcode creates one and only
one opcode scope (see example in next Subclause).

5.4.6.7.7 Oparray call

<expr> -> <ident> [<expr>] (<expr list>)

An oparray call expression allows the dynamic selection of an opcode state from a set of several, and the
calculation of encapsulated functionality with respect to that opcode state.

The identifier is termed the opcode name, the expression in brackets is termed the index expression, and the
expressions in the parameter list are termed the actual parameters. It is illegal to use an identifier which is
not the name of a core opcode and is also not the name of a user-defined opcode declared elsewhere in the
orchestra. It is also illegal to use an identifier for which oparray storage is not allocated in the local scope
as described in Subclause 5.4.6.5.5. For user-defined opcodes, the number of actual parameters shall be the
same as the number of formal parameters in the opcode definition. For core, the number of actual
parameters required varies from opcode to opcode; see Subclause 5.4.9.

The index expression shall be a single-valued expression.

The rate of the oparray call expression is the rate of the opcode referenced, as determined by the rules in
Subclause 5.4.7. The rate of the index expression shall not be faster than the rate of the opcode referenced.

The width of the oparray call expression is the number of channels returned by return statements within the
opcode code block.

The context of the oparray call expression is restricted in the same way as described for the opcode call
expression in Subclause 5.4.6.7.6.

The value of the oparray call expression is determined in the same way as described for the opcode call in
Subclause 5.4.6.7.6, with the following exceptions and additions:

Before the values of the actual parameter expressions are calculated, the value of the index expression is
calculated. It is a run-time error if the value of the index expression is not in the range [0..n-1], where n is
the allocation size in the oparray definition for this oparray. If the index expression is not an integer, it is
rounded to the nearest integer. The scope storage associated with the opcode name and the value of the
index expression is selected from the set of oparray scopes in the local scope. The evaluation of the
statement block in the referenced opcode is with regard to the selected scope. Within each oparray scope,
local variables retain their values from call to call.

EXAMPLES

SAOL syntax and semantics Instrument definition Expressions

60 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Some examples are provided to clarify the distinction between opcode calls and oparray calls.

The following user defined opcode

kopcode inc() {
 ksig ct;

 ct = ct + 1;
 return(ct);
 }

counts the number of times it is called.

1. After the first execution of the following code fragment

a = inc();
b = inc();

the value of a is 1, and the value of b is 1, since each call to inc() refers to a different scope.

2. After the first execution of the following code fragment

i = 0; while (i < 2) { a = inc(); i = i + 1; }

the value of a is 2, since there is only one scope for inc().

3. After the first execution of the following code fragment

oparray inc[2];

a = inc[0]();
b = inc[0]();

the value of a is 1, and the value of b is 2, since each call to inc() refers to the same scope (since the value
of the indexing expression is the same in both calls).

4. After the first execution of the following code fragment

oparray inc[2];

i = 0; while (i < 2) { a = inc[i](); i = i + 1; }

the value of a is 1, since each iteration refers to a different scope in the call to inc() (since the value of the
indexing expression is 0 on the first iteration, and 1 on the second).

NOTE

Opcode calls and oparray calls referencing the same opcode may be used in the same scope. In this case,
the scopes referenced by each of the opcode calls are different from any of the scopes defined in the oparray
definition.

5.4.6.7.8 Combination of vector and scalar elements in mathematical expressions
The subsequent Subclauses (Subclauses 5.4.6.7.9 through 5.4.6.7.13) describe mathematical expressions in
SAOL. For each, the width of the expression is the maximum width of any of its subexpressions. For each
expression type, each subexpression within an expression shall have the same width, or else width of 1. If

SAOL syntax and semantics Instrument definition Expressions

61 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

subexpressions with width 1 and width different than 1 are combined in an expression, before the
expression is computed, the subexpression(s) with width 1 shall be promoted to have the same width as the
expression. That is, a width 1 expression with value x which is a subexpression of a width n expression
shall be promoted to a width n expression where the value of each element is x.

For each expression type below, the semantics will be given for array-valued expressions. In each case, the
semantics for the single-valued expression are the same as for an array-valued expression with width 1,
except for the special cases of switch, logical AND, and logical OR, which will be described separately in
those Subclauses.

5.4.6.7.9 Switch

<expr> -> <expr> ? <expr> : <expr>

The switch expression combines values from two subexpressions based on the value of a third.

The rate of the switch expression is the rate of the fastest of the three subexpressions.

The value of the switch expression is calculated as follows: the three subexpressions are evaluated. Then,
for each value of the first subexpression, if this value is non-zero, the corresponding value of the switch
expression is the corresponding value of the second subexpression. If this value is zero, the corresponding
value of the switch expression is the corresponding value of the third subexpression.

In the special case where all subexpressions have width 1, then the switch expression “short-circuits”: the
first subexpression is evaluated, and if its value is non-zero, then the second subexpression is evaluated, and
its value is the value of the switch expression. If the value of the first subexpression is zero, then the third
subexpression is evaluated, and its value is the value of the switch expression. If the width of the switch
expression is 1, then in no case are both the second and third subexpressions evaluated.

5.4.6.7.10 Not

<expr> -> ! <expr>

The not expression performs logical negation on a subexpression.

The rate of the not expression is the rate of the subexpression.

The value of the not expression is calculated as follows: the subexpression is evaluated. For each nonzero
value in the subexpression, the corresponding value of the not expression is zero; for each zero value in the
subexpression, the corresponding value of the not expression is 1.

5.4.6.7.11 Negation

<expr> -> - <expr>

The negation expression performs arithmetic negation on a subexpression.

The rate of the negation expression is the rate of the subexpression.

The value of the negation expression shall be calculated as follows: the subexpression is evaluated. For
each value in the subexpression, the corresponding value of the negation expression is the arithmetic
negative of the value.

SAOL syntax and semantics Instrument definition Expressions

62 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.7.12 Binary operators
<expr> -> <expr> <binop> <expr>

There are 12 binary operators. Each of them calculates a different function on binary subexpressions.

The value of the expression shall be calculated as follows. The two subexpressions shall be evaluated, and
for each pair of values of the subexpressions, and the corresponding value of the binary expression shall be
calculated according to the following table, where x1 and x2 are the values of the first and second
subexpressions:

Operator Value of expression
+ x1 + x2

- x1 – x2_

* x1x2

/ x1 / x2_

== if x1 = x2, then 1, otherwise 0

> if x1 > x2, then 1, otherwise 0

< if x1 < x2, then 1, otherwise 0

<= if x1 ≤ x2, then 1, otherwise 0
>= if x1 ≥ x2, then 1, otherwise 0
!= if x1 ≠ x2, then 1, otherwise 0

In each of these cases, if the particular operation would result in a NaN or Inf result (for example, division
by 0), a run-time error shall result.

For the “logical and” operator && in the special case where both subexpressions have width 1, the
expression is calculated in a “short-circuit” fashion. The first subexpression shall be evaluated. If its value
is 0, then the value of the expression is 0; if its value is nonzero, then the second subexpression shall be
evaluated, and if its value is 0, then the value of the expression is 0, otherwise the value of the expression is
1.

For the “logical or” operator || in the special case where both subexpressions have width 1, the expression
is calculated in a “short-circuit” fashion. The first subexpression shall be evaluated. If its value is nonzero,
then the value of the expression is 1; if its value is 0, then the second subexpression shall be evaluated, and
if its value is nonzero, then the value of the expression is 1, otherwise the value of the expression is 0.

5.4.6.7.13 Parenthesis

<expr> -> (<expr>)

The parenthesis operator performs no new calculation, but allows the specification of arithmetic grouping.

The rate of the parenthesis expression is the rate of the subexpression.

The width of the parenthesis expression is the width of the subexpression.

The value of the parenthesis expression is the value of the subexpression.

SAOL syntax and semantics Instrument definition Standard names

63 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.7.14 Order of operations
Expressions bind in the order prescribed in the following table. That is, operations listed higher in the table
are performed before operations lower in the table whenever the ordering is syntactically ambiguous.
Operations listed on the same row associate left-to-right. That is, the leftmost expression is performed first.

Operator Function
! not
- unary negation
*, / multiply, divide
+, - add, subtract
<, >, <=, >= relational
==, != equality
&& logical and
|| logical or
?: switch

5.4.6.8 Standard names

5.4.6.8.1 Definition
Not all identifiers to be referenced in an instrument or opcode are required to be declared as variables.
Several identifiers, listed in this Subclause, are termed standard names, shall not be used as variables, and
have fixed semantics which shall be implemented in a compliant SAOL decoder. Standard names may
otherwise be used as variables, embedded in expressions, etc. in any SAOL instrument or opcode.
However, the semantics of using a standard name as an lvalue are undefined.

The implicit definition of each standard name, showing the rate semantics and width of that standard name,
is listed, and the semantics of the value of the standard name specified in the subsequent Subclauses.

5.4.6.8.2 k_rate
ivar k_rate

The standard name k_rate shall contain the control rate of the orchestra, in Hz.

5.4.6.8.3 s_rate
ivar s_rate

The standard name s_rate shall contain the sampling rate of the orchestra, in Hz.

5.4.6.8.4 inchan
ivar inchan

The standard name inchan, in each scope, shall contain the number of channels of input being provided to
the instrument instantiation with which that scope is associated. “Associated” shall be taken to mean, for
instrument code, the instrument instantiation for which the scope memory was created; for opcode code, the
instrument instantiation which called the opcode, or called the opcode’s caller, etc.

Different instances of the same instrument may have different numbers of input channels if, for example,
they are the targets of different send statements.

SAOL syntax and semantics Instrument definition Standard names

64 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.8.5 outchan
ivar outchan

The standard name outchan shall contain the number of channels of output being produced by the orchestra
(not by the instrument instance).

5.4.6.8.6 time
ivar time

The standard name time, in each scope, shall contain the time at which the instrument instantiation
associated with that scope was created.

NOTE

If the “event time” of an instrument (for example, a score event more precisely timed than one control
period) and the actual instantiation time differ, the name time shall contain the latter time, not the former.

5.4.6.8.7 dur
ivar dur

The standard name dur, in each scope, shall contain the duration of the instrument instantiation as
originally created, or –1 if the duration was not known at instantiation.

5.4.6.8.8 tempo
ksig tempo

The standard name tempo shall contain the value of the current global tempo, in beats per minute. The
default value is 60 beats per minute.

5.4.6.8.9 MIDIctrl
ksig MIDIctrl[128]

The MIDIctrl standard variable shall contain, for each scope, the current values of the MIDI controllers on
the channel corresponding to the channel to which the instrument instantiation associated with that scope is
assigned. See Subclause 5.9 for more details on MIDI control of orchestras.

5.4.6.8.10 MIDItouch
ksig MIDItouch

The MIDItouch standard variable shall contain, for each scope, the current value of the MIDI aftertouch on
the note which caused the associated instrument instantiation to be created. See Subclause 5.9 for more
details on MIDI control of orchestras.

5.4.6.8.11 MIDIbend
ksig MIDIbend

SAOL syntax and semantics Instrument definition Standard names

65 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The MIDIbend standard variable shall contain, for each scope, the current value of the MIDI pitchbend on
the channel corresponding to the channel to which the instrument instantiation associated with that scope is
assigned.

5.4.6.8.12 input
asig input[inchannels]

The input standard variable shall contain, for each scope, the input signal or signals being provided to the
instrument instantiation through the send instruction.

5.4.6.8.13 inGroup
ivar inGroup[inchannels]

The inGroup standard variable shall contain, for each scope, the grouping of the input signals being
provided to the instrument instantiation. See Subclause 5.4.5.5.

5.4.6.8.14 released
ksig released

The released standard name shall contain, for each scope, 1 if and only if the instrument instantiation
associated with the scope is scheduled to be destroyed at the end of the current orchestra pass. Otherwise,
released shall contain 0.

5.4.6.8.15 cpuload
ksig cpuload

The cpuload standard name shall contain, for each scope, a measure of the recent CPU load on the CPU
most strongly associated with the instrument instantiation associated with the scope. If the instrument
instantiation is running entirely on one CPU, then that CPU shall be measured; if the instrument
instantiation is running on multiple CPUs, then the exact measurement procedure is nonnormative. The
measure of CPU load shall be as a percentage of real-time capability: if the CPU is entirely loaded and
cannot perform any more calculations without slipping out of real-time performance, the value of cpuload
shall be 1 on that CPU at that k-cycle. If the CPU is entirely unloaded and is not performing any
calculations, the value of cpuload shall be 0 on that CPU at that k-cycle. If the CPU is half-loaded, and
could perform twice as many calculations in real-time as it is currently performing, the value of cpuload
shall be 0.5 on that CPU at that k-cycle.

The exact calculation method, time window, recency, etc. of the CPU load is left to implementors.

5.4.6.8.16 position
imports ksig position[3]

The position name contains the absolute position of the node responsible for creating the current orchestra
in the BIFS scene graph (see ISO 14496-1 Subclause XXX). The position is given by the current value of
the position field of the Sound node which is the ancestor of this node in the scene graph, as transformed
by its ancestors (that is, the final position in world co-ordinates of the Sound node). The value is global
and shared by all instruments; it may not be changed by the orchestra.

SAOL syntax and semantics Instrument definition Standard names

66 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.6.8.17 direction
ksig direction[3]

The direction name contains the orientation of the node responsible for creating the current orchestra in the
BIFS scene graph (see ISO 14496-1 Subclause XXX). The direction is given by the current value of the
direction field of the Sound node which is the ancestor of this node in the scene graph, as transformed by
its ancestors (that is, the final direction in world co-ordinates of the Sound node). The value is global and
shared by all instruments; it may not be changed by the orchestra.

5.4.6.8.18 listenerPosition
ksig listenerPosition[3]

The listenerPosition name contains the absolute position of the listener in the BIFS scene graph (see ISO
14496-1 Subclause XXX). The position is given by the current value of the position field of the active
ListeningPoint node in the scene graph, as transformed by its ancestors (that is, the final position in world
co-ordinates of the ListeningPoint node).

5.4.6.8.19 listenerDirection
ksig listenerDirection[3]

The listenerDirection name contains the orientation of the listener in the BIFS scene graph (see ISO
14496-1 Subclause XXX). The direction is given by the current value of the direction field of the active
ListeningPoint node in the scene graph, as transformed by its ancestors (that is, the final direction in world
co-ordinates of the ListeningPoint node).

5.4.6.8.20 minFront
ksig minFront

The minFront standard name gives one parameter of the sound radiation pattern of the sound which the
current node is a part of. This parameter, and its semantics, are defined by the minFront field of the Sound
node of which this node is an ancestor (see ISO 14496-1 Subclause XXX).

5.4.6.8.21 maxFront
ksig maxFront

The maxFront standard name gives one parameter of the sound radiation pattern of the sound which the
current node is a part of. This parameter, and its semantics, are defined by the maxFront field of the
Sound node of which this node is an ancestor (see ISO 14496-1 Subclause XXX).

5.4.6.8.22 minBack
ksig minBack

The minBack standard name gives one parameter of the sound radiation pattern of the sound which the
current node is a part of. This parameter, and its semantics, are defined by the minBack field of the Sound
node of which this node is an ancestor (see ISO 14496-1 Subclause XXX).

5.4.6.8.23 maxBack
ksig maxBack

SAOL syntax and semantics Opcode definition Syntactic Form

67 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The maxBack standard name gives one parameter of the sound radiation pattern of the sound which the
current node is a part of. This parameter, and its semantics, are defined by the maxBack field of the Sound
node of which this node is an ancestor (see ISO 14496-1 Subclause XXX).

5.4.6.8.24 params
imports exports ksig params[128]

The params standard name is shared globally by all instruments. At each k-cycle of the orchestra, it shall
contain the current values of the params field of the BIFS AudioFX node responsible for instantiating the
current orchestra. If the orchestra is created by an AudioSource node rather than an AudioFX node, the
value of params shall be 0 on every channel. See Subclause 5.11.3 for more details.

5.4.7 Opcode definition

5.4.7.1 Syntactic Form
This Subclause describes the definition of new opcodes. Bitstream authors may create their own opcodes
according to these rules in order to encapsulate functionality and simplify instruments and the content
authoring process.

<opcode definition> -> <opcode rate> <ident> (<formal param list>) {
 <opcode var declarations>
 <opcode statement block>
 }

<opcode rate> -> aopcode
<opcode rate> -> kopcode
<opcode rate> -> iopcode
<opcode rate> -> opcode

An opcode definition has several elements. In order, they are

1. A rate tag which defines the rate at which the opcode executes, or indicates that the opcode is
rate-polymorphic,

2. An identifier which defines the name of the opcode,

3. A list of zero or more formal parameters of the opcode,

4. A list of zero or more opcode variable declarations,

5. A block of statements defining the executable functionality of the opcode.

5.4.7.2 Rate tag
The rate tag describes the rate at which the opcode is to run, or else indicates that the opcode is rate-
polymorphic. The four rate tags are

1. iopcode, indicating that the opcode runs at i-rate,

SAOL syntax and semantics Opcode definition Opcode name

68 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

2. kopcode, indicating that the opcode runs at k-rate,

3. aopcode, indicating that the opcode runs at i-rate,

4. opcode, indicating that the opcode is rate-polymorphic.

See Subclause Error! Reference source not found. for instructions on determining the rate of a rate-
polymorphic opcode.

5.4.7.3 Opcode name
Any identifier may serve as the opcode name except that the opcode name shall not be a reserved word (see
Subclause 5.4.8)., the name of one of the core opcodes listed in Subclause 5.5, or the name of one of the
core wavetable generators listed in Subclause 5.6 An opcode name may be the same as the name of a
variable in local or global score; there is no ambiguity so created, since the contexts in which opcode names
may occur are very restricted.

No two instruments or opcodes in an orchestra shall have the same name.

5.4.7.4 Formal parameter list

5.4.7.4.1 Syntactic form

<formal param list> -> <formal param> [, <formal param list>]
<formal param list> -> <NULL>

<formal param> -> <opcode variable rate> <name>
<formal param> -> table <ident>

<opcode variable rate> -> asig
<opcode variable rate> -> ksig
<opcode variable rate> -> ivar
<opcode variable rate> -> xsig

<name> as defined in Subclause 5.4.5.3.2.

The formal parameter list defines the calling interface to the opcode. Each formal parameter in the list has a
name, a rate type, and may have an array width. If the array width is the special token inchannels, then the
array width shall be the same as the number of input channels to the associated instrument instantiation (in
the sense of Subclause 5.11.2); if the array width is the special token outchannels, then the array width
shall be the same as the number of orchestra output channels as defined in the global block.

There is no way to create user-defined opcodes with variable number of arguments in SAOL, although
certain of the core opcodes have this property.

Within the opcode statement block, formal parameters may be used like any other variable. The rate tag of
each formal parameter defines the rate of the variable. If an opcode is declared to be at a particular rate,
then no formal parameter shall be declared faster than that rate.

SAOL syntax and semantics Opcode definition Opcode variable declarations

69 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

There is a special rate tag xsig which allows formal parameters to be rate-polymorphic, see Subclause
Error! Reference source not found.. xsig shall not be the rate tag of any formal parameter unless the
opcode is of type opcode.

5.4.7.5 Opcode variable declarations

5.4.7.5.1 Syntactic form
<opcode var declarations> -> <opcode var declaration> [<opcode var declarations>]
<opcode var declarations> -> <NULL>

<opcode var declaration> -> <instr variable declaration>
<opcode var declaration> -> xsig <namelist> ;

<instr variable declaration> as defined in Subclause 5.4.6.5.1.
<namelist> as defined in Subclause 5.4.5.3.2.

The syntax and semantics of opcode variable declarations are the same as those of instrument variable
declarations as given in Subclause Error! Reference source not found., with the following exceptions and
additions:

The opcode variable names are available only within the scope of the opcode containing them. The
instrument variable declarations for the instrument instantiation associated with the opcode call are not
within the scope of an opcode, and references to these names shall not be made unless the names are also
explicitly declared within the opcode, in which case the variable denoted is a different one. However,
standard names (Subclause 5.4.6.8) are within the scope of every opcode, may be referenced within
opcodes, and shall have the semantics given in Subclause 5.4.6.8 as applied to the instrument instantiation
associated with the opcode call.

The values of opcode variables are static, and are preserved from call to call referencing a particular opcode
state. The values of opcode variables shall be set to 0 in an opcode state before the first call referencing
that state is executed.

The tablemap declaration may reference any tables declared in the local scope, as well as any formal
parameters which are tables.

The values of opcode variables in different states of the same opcode (due to different syntactic uses of
opcode expressions, or different indexing expressions in oparray expressions) are separate and have no
relationship to one another.

There is a special rate tag called xsig which may be used to declare opcode variables in rate-polymorphic
opcodes, see Subclause Error! Reference source not found.. xsig shall not be the rate tag of any variable
unless the opcode type is opcode.

5.4.7.6 Opcode statement block

SAOL syntax and semantics Opcode definition Opcode rate

70 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.4.7.6.1 Syntactic form
<opcode statement block> -> <opcode statement> [<opcode statement block>]
<opcode statement block> -> <NULL>

<opcode statement> -> <statement>
<opcode statement> -> return (<expr list>) ;

<statement> as defined in Subclause 5.4.6.6.1.
<expr list> as defined in Subclause 5.4.6.6.

The syntax and semantics of statements in opcodes are the same as the syntax and semantics of statements
in instruments, with the following exceptions and additions:

No statement in an opcode shall be faster than the rate of the opcode, as defined in Subclause Error!
Reference source not found..

The assignment statement and the values of all variables refer to the opcode state associated with this
particular call to this opcode, or associated with a particular indexing expression in an oparray call.

There is a special statement called return which is used in opcodes. This statement allows opcodes to
return values back to their callers.

5.4.7.6.2 Return statement
The return statement allows opcodes to return values back to their callers.

The expression parameter list may contain both single-valued and array-valued expressions.

The rate of the return statement is the rate of the opcode containing it. No expression in the expression
parameter list shall be faster than the rate of the opcode.

The return statement shall be evaluated as follows. Each expression in the expression parameter list is
evaluated, in the order they occur in the list. The return value of the opcode is the array-value formed by
sequencing the values of the expression parameters. In the case that there is only one expression parameter
which is a single-valued expression, then the return value of the opcode is the single value of that
expression. The return value denoted by every return statement within an opcode shall have the same
width (although it is permissible for them to differ in the number of expressions, so long as the sum of the
widths of the expressions is equal).

After a return statement is encountered, no further statements in the opcode are evaluated, and control
returns immediately to the calling instrument or opcode.

5.4.7.7 Opcode rate

5.4.7.7.1 Introduction
This Subclause describes the rules for determining the rate of a call to an opcode, and the semantics of the
special tags opcode and xsig.

The rate of an opcode call depends on the type of the opcode, as follows:

SAOL syntax and semantics Opcode definition Opcode rate

71 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

1. If the opcode type is aopcode, calls to the opcode are a-rate.

2. If the opcode type is kopcode, calls to the opcode are k-rate.

3. If the opcode type is iopcode, calls to the opcode are i-rate.

4. If the opcode type is opcode, the opcode is rate-polymorphic, and the rate is as described in the
next Subclause.

5.4.7.7.2 Rate-polymorphic opcodes
Opcodes which are rate-polymorphic take their rates from the context in which they are called. This allows
the same opcode statement block to apply to multiple calling rate contexts. Without such a construct, three
versions of each opcode of this sort would have to be created and used, depending on the context.

The rate of an opcode opcode for a particular call is the rate of the fastest actual parameter expression (not
formal parameter expression) in that call, or the rate of the fastest formal parameter in the opcode definition,
or the rate of the fastest guarding if, while, or else expression surrounding the opcode call, or the rate of the
opcode enclosing the opcode call, whichever is fastest.

Rate-polymorphic opcodes may contain variable declarations and formal parameter declarations using the
special rate tag xsig. A formal parameter of type xsig, for a particular call to that opcode, has the same rate
as the actual parameter expression in the calling expression to which it corresponds. A variable of type
xsig, for a particular call to that opcode, has the same rate as the opcode.

EXAMPLES

Given the following opcode definition:

opcode xop(ksig p1, xsig p2) {
 xsig v1;
 . . .
}

1. For the following code fragment

ksig k;

k = xop(1,2);

the rate of the opcode call is k-rate, since the formal parameter p1 is faster than either of the actual
parameters. The rate of p2 within the call to xop() is i-rate, matching the actual parameter. The rate of v1
within xop() is k-rate.

2. For the following code fragment

asig a1, a2;

a1 = xop(1,a2);

the rate of the opcode call is a-rate, since the actual parameter a2 is faster than either of the formal
parameters. The rates of p2 and v1 within the call to xop() are k-rate and a-rate respectively.

3. For the following code fragment

SAOL syntax and semantics Template declaration Syntactic form

72 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

ksig k;
asig a;

k = xop(1,a)

there is a rate mismatch error, since the opcode call is a-rate, and thus shall not be assigned to a k-rate
lvalue.

4. For the following code fragment

ksig k;
asig a1,a2;
oparray xop[10];

a1 = 0; while (a1 < 10) {
 a2 = a2 + xop[a1](1,k);
 a1 = a1 + 1;
}

the rate of the oparray call is a-rate, since the rate of the guarding expression is faster than any of the formal
parameters or actual parameters. The rates of p2 and v1 within xop() are a-rate as well.

5.4.8 Template declaration

5.4.8.1 Syntactic form
<template declaration> -> template < <identlist> > (<identlist>)
 map { <identlist> } with { <maplist> }

{ <instr variable declarations> <block> }<maplist> -> < <expr list>
> , <maplist>
<maplist> -> < <expr list> >

<identlist> as given in Subclause 5.4.5.4.
<namelist> as given in Subclause 5.4.5.3.2.
<instr variable declarations> as given in Subclause 5.4.6.5.1.
<expr list> as given in Subclause 5.4.6.6.1.
<block> as given in Subclause 5.4.6.6.1.

A template declaration allows the concise declaration of multiple instruments which are similar in
processing structure and syntax, but differ in only a few key expressions or wavetable names.

5.4.8.2 Semantics
The first identifier list contains the names for the instruments declared with the template. There shall be at
least one identifier in this list. The second identifier list contains the pfields for the template declaration.
Each instrument declared with the template has the same list of pfields. The third identifier list contains a
list of template variables which are to be replaced in the subsequent code block with expressions from the
map list. There may be no identifiers in this list, in which case each instrument declared by the template is
exactly the same.

SAOL syntax and semantics Template declaration Template instrument definitions

73 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The map list takes the form of a list of lists. This list shall have as many elements as template variables
declared in the third identifier list. Each sublist is a list of expressions, and shall have as many elements as
instrument names in the first identifier list.

5.4.8.3 Template instrument definitions
As many instruments are defined by the template definition as there are names in the first identifier list. To
describe each of the instruments, the identifiers described in the third (template variable) list are replaced in
turn by each of the expressions from the map list.

That is, to construct the code for the first instrument, the code block given is processed by replacing the first
template variable with the first expression from the first map list sublist, the second template variable with
the first expression from the second map list sublist, the third template variable with the first expression
from the third map list sublist, and so on. To construct the code for the second instrument, the code block
given is processed by replacing the first template variable with the second expression from the first map list
sublist, the second template variable with the second expression from the second map list sublist, the third
template variable with the second expression from the third map list sublist, and so on.

This code-block processing occurs before any other syntax-checking or rate-checking of the elements of the
instruments so defined. That is, the template variables are not true signal variables, and do not need to be
declared in the variable declaration block. Once the code-block processing and template expansion is
complete, the resulting instruments are treated as any other instruments in the orchestra.

EXAMPLE

The following template declaration:

template <oneharm, threeharm>(p)
 map {pitch,t,bar} with { <440, harm1, mysig>, <p, harm2, mysig * mysig + 2> }
{

 table harm1(harm,4096,1);
 table harm3(harm,4096,3,2,1);
 asig mysig;

 mysig = oscil(t,pitch,-1);

 mysig = bar *3;
 output(mysig);
}

declares exactly the same two instruments as the following two instrument declarations:

instr oneharm(p) {
 table harm1(harm,4096,1);
 table harm3(harm,4096,3,2,1);
 asig mysig;

 mysig = oscil(harm1,440,-1);

 mysig = mysig * 3;
 output(mysig);
 }

instr threeharm(p) {
 table harm1(harm,4096,1);
 table harm3(harm,4096,3,2,1);
 asig mysig;

 mysig = oscil(harm3,p,-1);

SAOL syntax and semantics Reserved words Template instrument definitions

74 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 mysig = (mysig * mysig + 2) * 3; // notice embedding of template expression
 output(mysig);
 }

5.4.9 Reserved words

The following words are reserved, and shall not be used as identifiers in a SAOL orchestra or score.

aopcode asig else exports extend global if imports inchannels inputmod instr iopcode ivar kopcode
krate ksig map oparray opcode outbus outchannels output return route send sequence sbsynth
spatialize srate table tablemap template turnoff while with xsig

Also, variable names starting with _sym_ are reserved for implementation-specific use (for example,
bitstream detokenisation – see Annex B).

SAOL core opcode definitions and semantics Introduction Template instrument definitions

75 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5 SAOL core opcode definitions and semantics

5.5.1 Introduction

This Subclause describes the definitions and normative semantics for each of the core opcodes in SAOL.
All core opcodes shall be implemented in every terminal complying to Profile 4.

For each core opcode, the following is described:

• The prototype, showing the rate of the opcode, the parameters which must be provided in a
call to this opcode, and the rates of these parameters.

• The normative semantics of the return value. These semantics describe how to calculate the
return value for each call to that opcode.

• The normative semantics of any side effects of the core opcode.

5.5.2 Specialop type

There is a special rate type for certain core opcodes called specialop. This rate type tag is not an actual
lexical element of the SAOL language, and shall not appear in a SAOL orchestra, but is used in subsequent
Subclauses as a shorthand for core opcodes with these particular semantics.

Core opcodes with rate type specialop describe functions which map from one or more a-rate signals into a
k-rate signal. That is, they have one or more parameters which vary at the a-rate, and they have normative
semantics described at the a-rate, but they only return values and/or have side effects at the k-rate. When
using these opcodes in expressions, they are treated as kopcode opcodes for the purposes of determining
the rate of the expression (although it is not a rate-mismatch error to pass them an a-rate signal), and as
aopcode opcodes for the purposes of determining when to execute them.

The core opcodes with this type are: fft, rms, sblock, downsamp, and decimate.

5.5.3 List of core opcodes

The several core opcodes are described in the subsequent Subclauses. They are divided by category into
major Subclauses, but there is no normative significance in this division; it is only for clarity of
presentation.

Math functions int, frac, dbamp, ampdb, abs, sgn, exp, log, sqrt, sin, cos, atan, pow, log10, asin,
acos, floor, ceil, min, max

Pitch converters gettune, settune, octpch, pchoct, cpspch, pchcps, cpsoct, octcps, midipch,
pchmidi, midioct, octmidi, midicps, cpsmidi

Table operations ftlen, ftloop, ftloopend, ftsr, ftbasecps, ftsetloop, ftsetend, ftsetbase, tableread,
tablewrite, oscil, loscil, doscil, koscil

Signal generators kline, aline, kexpon, aexpon, kphasor, aphasor, pluck, buzz, fof

Noise generators irand, krand, arand, ilinrand, klinrand, alinrand, iexprand, kexprand, iexprand,
kpoissonrand, apoissonrand, igaussrand, kgaussrand, agaussrand

SAOL core opcode definitions and semantics Math functions Introduction

76 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Filters port, hipass, lopass, bandpass, bandstop, biquad, allpass, comb, fir, iir, firt, iirt

Spectral analysis fft, ifft

Gain control rms, gain, balance, compress, pcompress

Sample conversion decimate, upsamp, downsamp, samphold, sblock

Delays delay, delay1, fracdelay

Effects reverb, chorus, flange

For each core opcode, an opcode prototype is given. This shows the rate of the opcode, the number of
required and optional formal parameters and the rate of each of the formal parameters. Certain parameters
to certain core opcodes are presented in brackets, in which case that formal parameter is optional. Certain
opcodes use the “…” notation, which means that the opcode can process an arbitrary number of parameters.
The “…” is tagged with a rate for such opcodes, which is then the rate type of all of the parameters
matching the varargs parameter. If there is not normative language for a particular opcode which specifies
otherwise, it is a syntax error if any of the following statements apply:

- there are fewer actual parameters in the opcode call than required formal parameters

- there are more actual parameters in the opcode call than required and optional formal
parameters, and the opcode definition does not include a varargs “...” Subclause

- a particular actual parameter expression is of faster rate than the corresponding formal
parameter, or than the varargs formal parameter if that is the correspondence

- a particular actual parameter expression is not single-valued, or is not table-valued when the
corresponding formal parameter specifies a table.

The names associated with the formal parameters in the core opcode prototypes have no normative
significance, but are used for clarity of exposition to refer to the values passed as the corresponding actual
parameters when describing how to calculate the return value of the core opcode.

5.5.4 Math functions

5.5.4.1 Introduction
Each of the opcodes in this Subclause computes a mathematical function. Whenever the result of
calculating the function on the argument or arguments provided results in a NaN or Inf value, a run-time
error shall result..

5.5.4.2 int
opcode int(xsig x)

The int core opcode calculates the integer part of its parameter.

The return value shall be the integer part of x.

SAOL core opcode definitions and semantics Math functions frac

77 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.4.3 frac
opcode frac(xsig x)

The frac core opcode calculates the fractional part of its parameter.

The return value shall be the fractional part of x, i.e., x – int(x). If x is negative, then frac(x) is also
negative.

5.5.4.4 dbamp
opcode dbamp(xsig x)

The dbamp core opcode calculates the amplitude equivalent of a decibel-valued parameter, where the
maximum amplitude of 1 corresponds to a decibel level of 90 dB.

The return value shall be 10 (x – 90) / 10.

5.5.4.5 ampdb
opcode ampdb(xsig x)

The ampdb core opcode calculates the decibel equivalent of an amplitude parameter, where the maximum
amplitude of 1 corresponds to a decibel level of 90 dB.

The return value shall be 90 + 10 log10 x.

5.5.4.6 abs
opcode abs(xsig x)

The abs core opcode calculates the absolute value of a parameter.

The return value shall be –x if x < 0, or x otherwise.

5.5.4.7 sgn
opcode sgn(xsig x)

The sgn core opcode calculates the signum (sign function) of a parameter.

The return value shall be –1 if x < 0, 0 if x = 0, or 1 if x > 0.

5.5.4.8 exp
opcode exp(xsig x)

The exp core opcode calculates the exponential function.

The return value shall be ex.

SAOL core opcode definitions and semantics Math functions log

78 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.4.9 log
opcode log(xsig x)

The log core opcode calculates the natural logarithm of a parameter.

It is a run-time error if x is not strictly positive.

The return value shall be log x.

5.5.4.10 sqrt
opcode sqrt(xsig x)

The sqrt core opcode calculates the square root of a parameter.

It is a run-time error if x is negative.

The return value shall be .

5.5.4.11 sin
opcode sin(xsig x)

The sin core opcode calculates the sine of a parameter given in radians.

The return value shall be sin x.

5.5.4.12 cos
opcode cos(xsig x)

The cos core opcode calculates the cosine of a parameter given in radians.

The return value shall be cos x.

5.5.4.13 atan
opcode atan(xsig x)

The atan core opcode calculates the arctangent of a parameter , in radians.

The return value shall be tan –1 x, in the range [0, π).

5.5.4.14 pow
opcode pow(xsig x, xsig y)

The pow core opcode calculates the to-the-power-of operation.

It shall be a run-time error if x is negative and y is not an integer.

The return value shall be xy.

SAOL core opcode definitions and semantics Math functions log10

79 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.4.15 log10
opcode log10(xsig x)

The log10 core opcode calculates the base-10 logarithm of a parameter.

It is a run-time error if x is not strictly positive.

The return value shall be log10 x.

5.5.4.16 asin
opcode asin(xsig x)

The asin core opcode calculates the arcsine of a parameter, in radians.

It is a run-time error if x is not in the range [-1, 1].

The return value shall be sin-1 x, in the range [0, π).

5.5.4.17 acos
opcode acos(xsig x)

The acos core opcode calculates the arccosine of a parameter, in radians.

It is a run-time error if x is not in the range [-1, 1].

The return value shall be cos –1 x, in the range [0, π).

5.5.4.18 ceil
opcode ceil(xsig x)

The ceil core opcode calculates the ceiling of a parameter.

The return value shall be the smallest integer y such that x ≤ y.

5.5.4.19 floor
opcode floor(xsig x)

The floor core opcode calculates the floor of a parameter.

The return value shall be the greatest integer y such that y ≤ x.

5.5.4.20 min
opcode min(xsig x1[, xsig ...])

The min core opcode finds the minimum of a number of parameters.

SAOL core opcode definitions and semantics Pitch converters max

80 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The return value shall be the minimum value out of the parameter values.

5.5.4.21 max
opcode max(xsig x1[, xsig ...])

The max core opcode finds the maximum out of the parameter values.

The return value shall be the maximum value out of the parameter values.

5.5.5 Pitch converters

5.5.5.1 Introduction to pitch representations
There are four representations for pitch in a SAOL orchestra; the following twelve functions (after gettune
and settune) convert them from one to another. The four representations are as follows:

- pitch-class, or pch representation. A pitch is represented as an integer part, which represents
the octave number, where 8 shall be the octave containing middle C (C4); plus a fractional
part, which represents the pitch-class, where .00 shall be C, .01 shall be C#, .02 shall be D,
and so forth. Fractional parts larger than .11 (B) have no meaning in this representation;
fractional parts between the pitch-class steps are rounded to the nearest pitch-class.

For example, 7.09 is the A below middle C.

- octave-fraction, or oct representation. A pitch is represented as an integer part, which
represents the octave number, where 8 shall be the octave containing middle C (C4); plus a
fractional part, which represents a fraction of an octave, where each step of 0.16667 represents
a semitone.

For example, 7.75 is the A below middle C, in equal-tempered tuning.

- MIDI pitch number representation. A pitch is represented as an integer number of semitones
from the bottom of the piano keyboard, where 60 shall be middle C (C4).

For example, 57 is the A below middle C.

- Frequency, or cps representation. A pitch is represented as some number of cycles per
second.

For example, 220 Hz is the A below middle C.

Each of the pitch converters represents the conversion which is done by its name, with the new
representation first and the original (parameter) representation second. Thus, cpsmidi is the converter
which returns the frequency corresponding to a particular MIDI pitch.

5.5.5.2 gettune
opcode gettune()

SAOL core opcode definitions and semantics Pitch converters settune

81 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The gettune core opcode returns the value in Hz of the current orchestra global tuning, which is the
frequency of A above middle C. The global tuning shall be set by default to 440, but can be changed using
the settune core opcode, Subclause 5.5.5.3.

5.5.5.3 settune
kopcode settune(ksig x)

The settune core opcode sets and returns the value of the current orchestra global tuning. The global tuning
is used by several pitch converters when converting between symbolic pitch representations and cycles-per-
second representation.

It is a run-time error if x is not strictly positive. (Allowing a wide range for tuning parameters allows
unusual “pitch” representations to be used).

This core opcode has side-effects, as follows: The global tuning variable shall be set to the value x.

The return value shall be x.

5.5.5.4 octpch
opcode octpch(xsig x)

The octpch core opcode converts pitch-class representation to octave representation, with regard to equal
scale tempering.

It is a run-time error if x is not strictly positive.

Let the integer part of x be y and the fractional part of x be z. Then, the return value shall be calculated as
follows:

z shall be “rounded” to the nearest value such that 100z is an integer. If z < 0 or z > 0.11, then z shall be set
to 0 instead.

Then, the return value shall be y + 100z / 12.

5.5.5.5 pchoct
opcode pchoct(xsig x)

The pchoct core opcode converts octave representation to pitch-class representation.

It is a run-time error if x is not strictly positive.

Let the integer part of x be y and the fractional part of x be z. Then, the return value shall be calculated as
follows:

z shall be rounded to the nearest value such that 12 z is an integer. Then, the return value shall be y + 12z /
100.

5.5.5.6 cpspch
opcode cpspch(xsig x)

SAOL core opcode definitions and semantics Pitch converters pchcps

82 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The cpspch core opcode converts pitch-class representation to cycles-per-second representation, with
regard to equal scale tempering and the global tuning.

It is a run-time error if x is not strictly positive.

Let the integer part of x be y and the fractional part of x be z. Then, the return value shall be calculated as
follows:

z shall be “rounded” to the nearest value such that 100z is an integer. If z < 0 or z > 11, then z shall be set to
0 instead.

Further let t be the global tuning parameter. Then, the return value shall be t × 2(y + 100z/12 – 8.75).

5.5.5.7 pchcps
opcode pchcps(xsig x)

The pchcps core opcode converts cycles-per-second representation to pitch-class representation, with
regard to the global tuning.

It is a run-time error if x is not strictly positive.

The return value shall be calculated as follows.

Let t be the global tuning parameter. Then, let k be log 2 (x / t) + 8.75. Then, let the integer part of k be y
and the fractional part of k be z, “rounded” to the nearest value such that 12z is an integer. The return value
shall be y + 12z / 100.

5.5.5.8 cpsoct
opcode cpsoct(xsig x)

The cpsoct core opcode converts octave representation to cycles-per-second representation, with regard to
the global tuning.

It is a run-time error if x is not strictly positive.

Let t be the global tuning value; then, the return value shall be t × 2(x – 8.75).

5.5.5.9 octcps
opcode octcps(asig x)

The octcps core opcode converts cycles-per-second representation to octave representation, with regard to
the global tuning.

It is a run-time error if x is not strictly positive.

Let t be the global tuning value; then, the return value shall be log2 (x / t) + 8.75.

SAOL core opcode definitions and semantics Pitch converters midipch

83 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.5.10 midipch
opcode midipch(asig x)

The midipch core opcode converts pitch-class representation to MIDI representation.

It is a run-time error if x is not strictly positive.

Let the integer part of x be y and the fractional part of x be z. Then, the return value shall be calculated as
follows:

z shall be “rounded” to the nearest value such that 100z is an integer. If z < 0 or z > 0.11, then z shall be set
to 0 instead.

The return value shall be 60 + 100z + 12 (y – 8).

5.5.5.11 pchmidi
opcode pchmidi(asig x)

The midipch core opcode converts MIDI representation to pitch-class representation.

It is a run-time error if x is not strictly positive.

The return value shall be calculated as follows: x shall be rounded to the nearest integer, then let k be (x –
60) / 12, and let y be the integer part of k, and let z be the fractional part of k. Then, the return value shall
be y + 8 + 12z / 100.

5.5.5.12 midioct
opcode midioct(asig x)

The midioct core opcode converts octave representation to MIDI representation.

It is a run-time error if x is not strictly positive.

The return value shall be calculated as follows. Let k be 12 (x – 8) + 60. Then, the value of k rounded to
the nearest integer shall be the return value.

5.5.5.13 octmidi
opcode octmidi(xsig x)

The octmidi core opcode converts MIDI representation to octave representation.

It is a run-time error if x is not strictly positive.

The return value shall be (x – 60) / 12 + 8.

5.5.5.14 midicps
opcode midicps(xsig x)

SAOL core opcode definitions and semantics Table operations cpsmidi

84 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The midicps core opcode converts cycles-per-second representation to MIDI representation, with regard to
the global tuning.

It is a run-time error if x is not strictly positive.

Let t be the global tuning parameter, and let k be 12 log2 (x / t) + 69. Then, the return value shall be k
rounded to the nearest integer.

5.5.5.15 cpsmidi
opcode cpsmidi(xsig x)

The cpsmidi core opcode converts MIDI representation to cycles-per-second representation, with regard to
the global tuning and equal scale temperament.

It is a run-time error if x is not strictly positive.

Let t be the global tuning parameter. Then, the return value shall be t × 2(x – 69) /12.

5.5.6 Table operations

5.5.6.1 ftlen
opcode ftlen(table t)

The ftlen core opcode returns the length of a table. The length of a table is the value calculated based on
the size parameter in the particular core wavetable generator as described in Subclause 5.6.

The return value shall be the length of the table referenced by t.

5.5.6.2 ftloop
opcode ftloop(table t)

The ftloop core opcode returns the loop start point of a wavetable. The loop point is set either in a sound
sample data block in the bitstream, or by the ftsetloop core opcode (see Subclause 5.5.6.6), or else it is 0.

The return value shall be the loop start point (in samples) of the wavetable referenced by t.

5.5.6.3 ftloopend
opcode ftloopend(table t)

The ftloopend core opcode returns the loop end point of a wavetable. The loop point is set either in a
sound sample data block in the bitstream, or by the ftsetend core opcode (see Subclause 5.5.6.7), or else it
is 0.

The return value shall be the loop end point (in samples) of the wavetable referenced by t.

5.5.6.4 ftsr
opcode ftsr(table t)

SAOL core opcode definitions and semantics Table operations ftbasecps

85 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The ftsr core opcode returns the sampling rate of a wavetable. The sampling rate is set in a sound sample
data block in the bitstream, or else it is 0.

The return value shall be the sampling rate, in Hz, of the wavetable referenced by t.

5.5.6.5 ftbasecps
opcode ftbasecps(table t)

The ftbasecps core opcode returns the base frequency of a wavetable, in cycles per second (Hz). The base
frequency is set either in a sound sample data block in the bitstream, or in the core wavetable generator
sample (Subclause 5.6.2), or by the core opcode ftsetbase (Subclause 5.5.6.8), or else it is 0.

The return value shall be the base frequency, in Hz, of the wavetable referenced by t.

5.5.6.6 ftsetloop
kopcode ftsetloop(table t, ksig x)

The ftbasecps core opcode sets the loop start point of a wavetable to a new value, and returns the new
value.

It is a run-time error if x < 0, or if x is larger than the size of the wavetable referenced by t.

This core opcode has side effects, as follows: the loop start point of the wavetable t shall be set to sample
number x.

The return value shall be x.

5.5.6.7 ftsetend
kopcode ftsetend(table t, ksig x)

The ftsetend core opcode sets the loop end point of a wavetable to a new value, and returns the new value.
It is a run-time error if x < 0, or if x is larger than the size of the wavetable referenced by t.

This core opcode has side effects, as follows: the loop end point of the wavetable t shall be set to sample
number x.

The return value shall be x.

5.5.6.8 ftsetbase
kopcode ftsetbase(table t, ksig x)

The ftsetbase core opcode sets the base frequency of a wavetable to a new value, and returns the new value.
It is a run-time error if x is not strictly positive.

This core opcode has side effects, as follows: the base frequency of the wavetable t shall be set to x, where
x is a value in Hz.

The return value shall be x.

SAOL core opcode definitions and semantics Table operations tableread

86 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.6.9 tableread
opcode tableread(table t, xsig index)

The tableread core opcode returns a single value from a wavetable. It is a run-time error if x < 0, or if x is
larger than the size of the wavetable referenced by t.

The return value shall be the value of the wavetable t at sample number index, where sample number 0 is
the first sample in the wavetable. If index is not an integer, then the return value shall be interpolated from
nearby points of the wavetable, as described in Subclause 1.X, with a maximum passband ripple of 1 dB, a
minimum stopband attenuation of 80 dB, and a maximum transition width of 10% of Nyquist.

5.5.6.10 tablewrite
opcode tablewrite(table t, xsig index, xsig val)

The tablewrite core opcode sets a single value in a wavetable, and returns that value. It is a run-time error
if index < 0, or if index is larger than the size of the wavetable referenced by t.

This core opcode has side effects, as follows: index shall be rounded to the nearest integer, and the value of
sample number index in the wavetable t shall be set to the new value val, where sample number 0 is the
first sample in the wavetable.

The return value shall be val.

5.5.6.11 oscil
aopcode oscil(table t, sig freq[, ivar loops])

The oscil core opcode loops several times around the wavetable t at a rate of freq loops per second,
returning values at the audio-rate. loops shall be rounded to the nearest integer when the opcode is
evaluated. If loops is not provided, its value shall be –1.

It is a run-time error if loops is not strictly positive and is also not –1.

The return value is calculated according to the following procedure.

On the first a-rate call to oscil relative to a particular state, the internal phase shall be set to 0, and the
internal number of loops set to loops. On subsequent calls, the internal phase shall be incremented by
freq/SR, where SR is the orchestra sampling rate. If, after the incrementation, the internal phase is not in
the interval [0,1] and the internal loop count is strictly positive, the phase shall be set to the fractional
portion of its value (p := p – floor(p)) and the loop count decremented.

If the internal loop count is zero, the return value shall be 0. Otherwise the return value shall be the value
of sample number x in the wavetable, where x = p * l, where p is the current internal phase, and l is the
length of table t. If x is not an integer, then the value must be interpolated from the nearby table values, as
described in Subclause 1.X, with a maximum passband ripple of 2.5 dB, a minimum stopband attenuation of
60 dB, and a maximum transition width of 10% of Nyquist.

NOTE

The oscil opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of oscil is referenced twice in the same a-cycle, then the effective loop frequency is
twice as high as given by freq.

SAOL core opcode definitions and semantics Table operations loscil

87 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.6.12 loscil
aopcode loscil(table t, sig freq[, ivar basefreq, ivar loopstart, ivar loopend])

This opcode loops around the wavetable t, returning values at the audio-rate. The looping continues as long
as the opcode is active, and is performed at a special rate which depends on the base frequency basefreq
and the sampling rate of the table. In this way, samples which were recorded at a particular known pitch
may be interpolated to any other pitch.

If basefreq is not provided, it shall be set to the base frequency of the table t by default. If the table t has
base frequency 0 and basefreq is not provided, it is a run-time error. If basefreq is not strictly positive, it
is a runtime error. The basefreq parameter shall be specified in Hz.

If loopstart and loopend are not provided, they shall be set to the loop start point and loop end point of the
table t, respectively. If loopend is not provided and the loop end point of t is 0, then it shall be set to the
end of the table (l – 1, where l is the length of the table in sample points). If loopstart is not strictly less
than loopend, or either is negative, it is a runtime error.

The return value is calculated according to the following procedure.

Let l be the length of the table, m be the value loopstart / l, and n be the value loopend / l. On the first a-
rate call to oscil relative to a particular state, the internal phase shall be set to m. On subsequent calls, the
internal phase shall be incremented by freq * TSR / (basefreq *SR), where TSR is the sampling rate of the
table and SR is the orchestra sampling rate. If, after the incrementation, the internal phase is not in the
interval [m,n], the phase shall be set to m + p - kn, where p is the internal phase and k is the value
floor(ph/n).

Otherwise the return value shall be the value of sample number x in the wavetable, where x = p * l, where p
is the current internal phase, and l is the length of table t. If x is not an integer, then the value must be
interpolated from the nearby table values, as described in Subclause 1.X, with a maximum passband ripple
of 2.5 dB, a minimum stopband attenuation of 60 dB, and a maximum transition width of 10% of Nyquist.

NOTE

The loscil opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of loscil is referenced twice in the same a-cycle, then the effective loop frequency is
twice as high as given by freq.

5.5.6.13 doscil
aopcode doscil(table t)

The doscil core opcode plays back a sample once, with no frequency control or looping. It is useful for
sample-rate matching sampled drum sounds to an orchestra rate.

The return value is calculated according to the following procedure.

On the first a-rate call to oscil relative to a particular state, the internal phase shall be set to 0. On
subsequent calls, the internal phase shall be incremented by TSR/SR, where TSR is the sampling rate of the
table t and SR is the orchestra sampling rate. If, after the incrementation, the internal phase is greater than
1, then the opcode is done.

If the opcode is done, the return value shall be 0. Otherwise the return value shall be the value of sample
number x in the wavetable, where x = p * l, where p is the current internal phase, and l is the length of table
t. If x is not an integer, then the value must be interpolated from the nearby table values, as described in

SAOL core opcode definitions and semantics Signal generators koscil

88 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Subclause 1.X, with a maximum passband ripple of 2.5 dB, a minimum stopband attenuation of 60 dB, and
a maximum transition width of 10% of Nyquist.

NOTE

The doscil opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of doscil is referenced twice in the same a-cycle, then the sample is played back at
twice its original frequency.

5.5.6.14 koscil
kopcode koscil(table t, ksig freq[, ivar loops])

This opcode loops several times around the wavetable t at a rate of freq loops per second, returning values
at the control-rate. loops shall be rounded to the nearest integer when the opcode is evaluated. If loops is
not provided, its value shall be set to –1.

It is a run-time error if loops is not strictly positive and is also not –1.

The return value is calculated according to the following procedure.

On the first k-rate call to oscil relative to a particular state, the internal phase shall be set to 0, and the
internal number of loops set to loops. On subsequent calls, the internal phase shall be incremented by
freq/KR, where KR is the orchestra control rate. If, after the incrementation, the phase is not in the interval
[0,1]and the internal loop count is strictly positive, the phase shall be set to the fractional portion of its
value (p := p – floor(p)) and the loop count decremented.

If the internal loop count is zero, the return value shall be 0. Otherwise the return value shall be the value
of sample number x in the wavetable, where x = p * l, where p is the current internal phase, and l is the
length of table t. If x is not an integer, then the value must be interpolated from the nearby table values, as
described in Subclause 1.X, with a maximum passband ripple of 2.5 dB, a minimum stopband attenuation of
60 dB, and a maximum transition width of 10% of Nyquist.

NOTE

The koscil opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of koscil is referenced twice in the same k-cycle, then the effective loop frequency is
twice as high as given by freq.

5.5.7 Signal generators

5.5.7.1 kline
kopcode kline(ivar x1, ivar dur1, ivar x2[, ivar dur2, ivar x3, …]);

The kline core opcode produces a line-segmented or “ramp” function, with values changing at the k-rate.
This function takes dur1 seconds to go from x1 to x2, dur2 seconds to go from x2 to x3, and so on.

It is a run-time error if any of the following conditions apply:

- there are an even number of parameters

- any of the dur values are negative

SAOL core opcode definitions and semantics Signal generators aline

89 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The return value shall be calculated as follows:

On the first call to kline with regard to a particular state, the internal time shall be set to 0, the current left
point to x1, the current right point to x2, and the current duration to dur1. On subsequent calls, the
internal time shall be incremented by 1/KR, where KR is the orchestra control rate. So long as the internal
time is thereby greater than the current duration and there is another duration parameter, the internal time
shall be decremented by the current duration, the current duration shall be set to the next duration
parameter, the current left point to the current right point, and the current right point to the next control
point (x-value) (these steps repeat if necessary so long as the internal time is greater than the current
duration). If there is no additional duration parameter, the generator is done.

If the generator is done, then the return value is 0. Otherwise, the return value is l + (r – l)t/d, where l is the
current left point, r is the current right point, t is the internal time, and d is the current duration.

NOTE

The kline opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of kline is referenced twice in the same k-cycle, then the effective segment duration
is half as long as given by the corresponding duration value.

5.5.7.2 aline
kopcode aline(ivar x1, ivar dur1, ivar x2[, ivar dur2, ivar x3, …]);

The aline core opcode produces a line-segmented or “ramp” function, with values changing at the a-rate.
This function takes dur1 seconds to go from x1 to x2, dur2 seconds to go from x2 to x3, and so on.

It is a run-time error if any of the following conditions apply:

- there are an even number of parameters

- any of the dur values are negative

The return value shall be calculated as follows:

On the first call to aline with regard to a particular state, the internal time shall be set to 0, the current left
point to x1, the current right point to x2, and the current duration to dur1. On subsequent calls, the
internal time shall be incremented by 1/SR, where SR is the orchestra sampling rate. So long as the internal
time is thereby greater than the current duration and there is another duration parameter, the internal time
shall be decremented by the current duration, the current duration shall be set to the next duration
parameter, the current left point to the current right point, and the current right point to the next control
point (x-value) (these steps repeat if necessary so long as the internal time is greater than the current
duration). If there is no additional duration parameter, the generator is done.

If the generator is done, then the return value is 0. Otherwise, the return value is l + (r – l) x t/d, where l is
the current left point, r is the current right point, t is the internal time, and d is the current duration.

NOTE

The aline opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of aline is referenced twice in the same a-cycle, then the effective segment duration
is half as long as given by the corresponding duration value.

SAOL core opcode definitions and semantics Signal generators kexpon

90 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.7.3 kexpon
kopcode kexpon(ivar x1, ivar dur1, ivar x2[, ivar dur2, ivar x3, …]);

The kexpon core opcode produces a segmented function made out of exponential curves, with values
changing at the k-rate. This function takes dur1 seconds to go from x1 to x2, dur2 seconds to go from x2
to x3, and so on.

It is a run-time error if any of the following conditions apply:

- there are an even number of parameters

- any of the dur values are negative

- the x values are not all the same sign

- any x value is 0

The return value shall be calculated as follows:

On the first call to kexpon with regard to a particular state, the internal time shall be set to 0, the current
left point to x1, the current right point to x2, and the current duration to dur1. On subsequent calls, the
internal time shall be incremented by 1/KR, where KR is the orchestra control rate. . So long as the
internal time is thereby greater than the current duration and there is another duration parameter, the internal
time shall be decremented by the current duration, the current duration shall be set to the next duration
parameter, the current left point to the current right point, and the current right point to the next control
point (x-value) (these steps repeat if necessary so long as the internal time is greater than the current
duration). If there is no additional duration parameter, the generator is done.

If the generator is done, then the return value is 0. Otherwise, the return value is l (r / l)t/d, where l is the
current left point, r is the current right point, t is the internal time, and d is the current duration.

NOTE

The kexpon opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of kexpon is referenced twice in the same k-cycle, then the effective segment
duration is half as long as given by the corresponding duration value.

5.5.7.4 aexpon
aopcode aexpon(ivar x1, ivar dur1, ivar x2[, ivar dur2, ivar x3, …]);

The aexpon core opcode produces a segmented function made out of exponential curves, with values
changing at the a-rate. This function takes dur1 seconds to go from x1 to x2, dur2 seconds to go from x2
to x3, and so on.

It is a run-time error if any of the following conditions apply:

- there are an even number of parameters

- any of the dur values are negative

- the x values are not all the same sign

- any x value is 0

SAOL core opcode definitions and semantics Signal generators kphasor

91 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The return value shall be calculated as follows:

On the first call to aexpon with regard to a particular state, the internal time shall be set to 0, the current
left point to x1, the current right point to x2, and the current duration to dur1. On subsequent calls, the
internal time shall be incremented by 1/SR, where SR is the orchestra sampling rate. . So long as the
internal time is thereby greater than the current duration and there is another duration parameter, the internal
time shall be decremented by the current duration, the current duration shall be set to the next duration
parameter, the current left point to the current right point, and the current right point to the next control
point (x-value) (these steps repeat if necessary so long as the internal time is greater than the current
duration). If there is no additional duration parameter, the generator is done.

If the generator is done, then the return value is 0. Otherwise, the return value is l (r / l)t/d, where l is the
current left point, r is the current right point, t is the internal time, and d is the current duration.

NOTE

The aexpon opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of aexpon is referenced twice in the same a-cycle, then the effective segment
duration is half as long as given by the corresponding duration value.

5.5.7.5 kphasor
kopcode kphasor(ksig cps)

The kphasor core opcode produces a moving phase value, looping from 0 to 1 repeatedly, cps times per
second.

The return value shall be calculated as follows:

On the first call to kphasor with regard to a particular state, the internal phase shall be set to 0. On
subsequent calls, the internal phase shall be incremented by cps/KR, where R is the orchestra control rate.
If the internal phase is thereby not in the interval [0,1], the internal phase shall be set to the fractional part
of its value (p = frac(p)). The return value is the internal phase.

NOTE

The kphasor opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of kphasor is referenced twice in the same k-cycle, then the effective frequency is
twice as fast as given by cps.

5.5.7.6 aphasor
aopcode aphasor(asig cps)

The aphasor opcode produces a moving phase value, looping from 0 to 1 repeatedly, cps times per second.

The return value shall be calculated as follows:

On the first call to aphasor with regard to a particular state, the internal phase shall be set to 0. On
subsequent calls, the internal phase shall be incremented by cps/SR, where SR is the orchestra sampling
rate. If the internal phase is thereby not in the interval [0,1], the internal phase shall be set to the fractional
part of its value (p = frac(p)). The return value is the internal phase.

NOTE

SAOL core opcode definitions and semantics Signal generators pluck

92 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The aphasor opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of aphasor is referenced twice in the same a-cycle, then the effective frequency is
twice as fast as given by cps.

5.5.7.7 pluck
aopcode pluck(asig cps, ivar buflen, table init, ksig atten, ksig smoothrate)

This opcode uses a simple form of the Karplus-Strong algorithm to generate plucked-string sounds by
repeated sampling and smoothing of a buffer.

It is a run-time error if buflen is not strictly positive.

The return value is calculated as follows:

On the first call to pluck with regard to a particular opcode state, a buffer of length buflen shall be created
and filled with the values from the table init, as follows. Let x be the length of the table init. If x is less
than bufval, then the values of the buffer shall be set to the first buflen sample values of the table init. If x
is greater than or equal to buflen, then the first buflen values of the buffer shall be set to the sample values
in the table init, and the remainder of the buffer filled as described in this paragraph for the whole table.
That is, as many full and partial cycles of the table are used as necessary to fill the buffer.

Also on the first call to pluck with regard to a particular state, the internal phase shall be set to 0, and the
smooth count shall be set to 0.

On subsequent calls to pluck with regard to a state, the smooth count is incremented. If the smooth count is
equal to smoothrate, the buffer shall be smoothed, as follows. A new buffer of length buflen shall be
created, and its values set by averaging over the current buffer. Each sample value in the new buffer shall
be set to the value of the attenuated mean of the five surrounding samples of the current buffer. That is, for
each sample x of the new buffer, its value shall be set to atten * (b[x-2] + b[x-1] + b[x] + b[x+1] +
b[x+2])/5, where the b[.] notation refers to values of the current buffer, and the indices are calculated
modulo buflen (that is, they “wrap around”). Then, the values of the current buffer shall be set to the
values of the new buffer.

Whether or not the buffer has just been smoothed, the internal phase shall be incremented by cps/SR, where
SR is the orchestra sampling rate, and if the resulting value is not in the interval [0,1], then the internal
phase shall be set to the fractional part of the internal phase (p = p – floor(p)).

The return value shall be the value of the buffer at the point p * buflen, where p is the internal phase. If this
index is not an integer, the value must be interpolated from nearby buffer values, as described in Subclause
1.X, with a maximum passband ripple of 2.5 dB, a minimum stopband attenuation of 60 dB, and a
maximum transition width of 10% of Nyquist.

NOTE

The pluck opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of pluck is referenced twice in the same a-cycle, then the effective frequency is
twice as fast as given by cps.

5.5.7.8 buzz
aopcode buzz(asig cps, ksig nharm, ksig lowharm, ksig rolloff)

SAOL core opcode definitions and semantics Noise generators fof

93 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The buzz opcode produces a band-limited pulse train formed by adding together cosine overtones of a
fundamental frequency cps given in Hz. These noisy sounds are useful as complex sound sources for
subtractive synthesis.

lowharm gives the lowest harmonic used, where 0 is the fundamental, at frequency cps. It is a runtime
error if lowharm is negative.

nharm gives the number of harmonics used starting from lowharm. If nharm is not strictly positive, then
every overtone up to the orchestra Nyquist frequency is used (nharm shall be set to SR / 2 / cps –
lowharm).

rolloff gives the multiplicative rolloff which defines the spectral shape. If rolloff is negative, then the
partials alternate in phase; if |rolloff| > 1, then the partials increase in amplitude rather than attenuating.

The return value is calculated as follows. On the first call to buzz with regard to a particular scope, the
internal phase shall be set to 0. On subsequent calls, the internal phase shall be incremented by cps / SR,
where SR is the orchestra sampling rate. If, after this incrementation, the internal phase is greater than 1,
the internal phase shall be set to the fractional part of its value (p := frac(p)).

The return value shall be

∑
+

=

−
nharmlowharm

lowharm

lowharmrolloff
f

f fpπ2cos)(

where p is the internal phase.

5.5.7.9 fof
aopcode fof(asig f0, asig formant, table wave, table amp, ksig dur)

The fof opcode uses Rodet’s FOF method [ref XXX] to synthesise a voiced vowel formant.

5.5.8 Noise generators

5.5.8.1 Note on noise generators and pseudo-random sequences
The following core opcodes generate noise, that is, pseudo-random sequences of various statistical
properties. In order to provide maximum decorrelation among multiple noise generators, it is important that
all references to pseudo-random generation share a single feedback state. That is, all random values
required by the various states of various noise generators should make use of sequential values from a single
“master” pseudo-random sequence.

It is strictly prohibited for an implementation to maintain multiple pseudo-random sequences to draw from
(using the same algorithm) for various states of noise generation opcodes, because to do so may result in
strong correlations between multiple noise generators.

This point does not apply to implementations which do not use “linear congruential”, “modulo feedback”,
or similar mathematical structures to generate pseudo-random numbers.

SAOL core opcode definitions and semantics Noise generators irand

94 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The standard mathematical description of probability density functions is used in this Subclause. This
means that if the pdf of a random variable x is f(x), then the probability of it taking a value in the range [y,z]

is ∫
z

y
dxxf)(.

5.5.8.2 irand
iopcode irand(ivar p)

The irand core opcode generates a random number from a linear distribution.

The return value shall be a random number x chosen according to the pdf

 −∈

=
otherwise

x
xp

:0

],[:2/1
)(

ppp

5.5.8.3 krand
kopcode krand(ksig p)

The krand core opcode generates random numbers from a linear distribution.

The return value shall be a random number x chosen according to the pdf

 −∈

=
otherwise

x
xp

:0

],[:2/1
)(

ppp

5.5.8.4 arand
aopcode arand(asig p)

The arand core opcode generates random noise according to a linear distribution.

The return value shall be a random number x chosen according to the pdf

 −∈

=
otherwise

x
xp

:0

],[:2/1
)(

ppp

5.5.8.5 ilinrand
iopcode ilinrand(ivar p1, ivar p2)

The ilinrand core opcode generates a random number from a linearly-ramped distribution.

The return value shall be a random number x chosen according to the pdf

p(x) = abs(2 / (p2 – p1) * [(x – p1) / (p2 – p1)]) if x ∈ [p1,p2]
0 otherwise

SAOL core opcode definitions and semantics Noise generators klinrand

95 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.8.6 klinrand
kopcode klinrand(ksig p1, ksig p2)

The klinrand core opcode generates random numbers from a linearly-ramped distribution.

The return value shall be a random number x chosen according to the pdf

p(x) = abs(2 / (p2 – p1) * [(x – p1) / (p2 – p1)]) if x ∈ [p1,p2]
0 otherwise

5.5.8.7 alinrand
aopcode alinrand(asig p1, asig p2)

The alinrand core opcode generates random noise from a linearly-ramped distribution.

The return value shall be a random number x chosen according to the pdf

p(x) = abs(2 / (p2 – p1) * [(x – p1) / (p2 – p1)]) if x ∈ [p1,p2]
0 otherwise

5.5.8.8 iexprand
iopcode iexprand(ivar p1)

The iexprand core opcode generates a random number from a exponential distribution with mean p1. It is
a run-time error if p1 is not strictly positive.

The return value shall be a random number x chosen according to the pdf

p(x) = 0 if x ≤ 0, or
k exp(-kx), where k = 1 / p1, otherwise.

5.5.8.9 kexprand
kopcode kexprand(ksig p1)

The kexprand core opcode generates random numbers from an exponential distribution with mean p1. It is
a run-time error if p1 is not strictly positive.

The return value shall be a random number x chosen according to the pdf

p(x) = 0 if x ≤ 0, or
k exp(-kx), where k = 1 / p1, otherwise.

5.5.8.10 aexprand
aopcode aexprand(asig p1)

The aexprand core opcode generates random noise according to an exponential distribution with mean p1.
It is a run-time error if p1 is not strictly positive.

The return value shall be a random number x chosen according to the pdf

SAOL core opcode definitions and semantics Noise generators kpoissonrand

96 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

p(x) = 0 if x ≤ 0, or
k exp(-kx), where k = 1 / p1, otherwise.

5.5.8.11 kpoissonrand
kopcode kpoissonrand(ksig p1)

The kpoissonrand core opcode generates a random binary (0/1) sequence of numbers such that the mean
time between 1’s is p1 seconds. It is a run-time error if p1 is not strictly positive.

On the first call to kpoissonrand with regard to a particular opcode state, a random number x shall be
chosen according to the pdf

p(x) = 0 If x ≤ 0, or
k exp(-kx), where k = 1/ (p1 * KR), otherwise.

where KR is the orchestra control rate.

The return value shall be 0 and the floor of this random value shall be stored.

On subsequent calls, the stored value shall be decremented by 1. If the decremented value is -1, the return
value shall be 1 and a new random value shall be generated and stored as described above. Otherwise, the
return value shall be 0.

NOTE

The kpoissonrand opcode shall not have a “proper” representation of time, but shall infer it from the
number of calls. If the same state of kpoissonrand is referenced twice in the same k-cycle, then the
effective mean time between 1 values is half as long as given by t.

5.5.8.12 apoissonrand
aopcode apoissonrand(asig p1)

The apoissonrand core opcode generates random binary (0/1) noise such that the mean time between 1’s is
p1 seconds. It is a run-time error if p1 is not strictly positive.

On the first call to apoissonrand with regard to a particular opcode state, a random number x shall be
chosen according to the pdf

p(x) = 0 If x ≤ 0, or
k exp(-kx), where k = 1 / (p1 * SR), otherwise.

where SR is the orchestra sampling rate.

The return value shall be 0 and the floor of this random value shall be stored.

On subsequent calls, the stored value shall be decremented by 1. If the decremented value is -1, the return
value shall be 1 and a new random value shall be generated and stored as described above. Otherwise, the
return value shall be 0.

NOTE

SAOL core opcode definitions and semantics Noise generators igaussrand

97 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The apoissonrand opcode shall not have a “proper” representation of time, but shall infer it from the
number of calls. If the same state of apoissonrand is referenced twice in the same a-cycle, then the
effective mean time between 1 values is half as long as given by t.

5.5.8.13 igaussrand
iopcode igaussrand(ivar mean, ivar var)

The igaussrand core opcode generates a random number drawn from a Gaussian (normal) distribution with
mean mean and variance var.

It is a run-time error if var is not strictly positive.

The return value shall be a random number x chosen according to the pdf

var

varmean

×

−−

=
π2

)2/()(2

)(
xe

xp

that is, p(x) ~ N(mean, var) where mean is the mean and var the variance of a normal distribution.

5.5.8.14 kgaussrand
kopcode kgaussrand(ksig mean, ksig var)

The kgaussrand core opcode generates random numbers drawn from a Gaussian (normal) distribution with
mean mean and variance var.

It is a run-time error if var is not strictly positive.

The return value shall be a random number x chosen according to the pdf

var

varmean

×

−−

=
π2

)2/()(2

)(
xe

xp ,

that is, p(x) ~ N(mean, var) where mean is the mean and var the variance of a normal distribution.

5.5.8.15 agaussrand
aopcode agaussrand(asig mean, asig var)

The agaussrand core opcode generates random noise drawn from a Gaussian (normal) distribution with
mean mean and variance var.

It is a run-time error if var is not strictly positive.

The return value shall be a random number x chosen according to the pdf

var

varmean

×

−−

=
π2

)2/()(2

)(
xe

xp ,

SAOL core opcode definitions and semantics Filters port

98 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

that is, p(x) ~ N(mean, var) where mean is the mean and var the variance of a normal distribution.

5.5.9 Filters

5.5.9.1 port
kopcode port(ksig ctrl, ksig htime)

The port core opcode converts a step-valued control signal into a portamento signal. ctrl is an incoming
control signal, and htime is the half-transition time in seconds to slide from one value to the next.

The return value is calculated as follows. On the first call to port with regard to a particular state, the
current value and old value are both set to ctrl. On subsequent calls, if ctrl is not equal to the new value,
then the old value is set to the current value, the new value is set to ctrl and the current time is set to 0. It is
a run-time error if ctrl is 0 or has opposite sign from the current value.

If htime is 0, the current value is set to the new value.

The return value is calculated as follows. If the current value and new value are equal, then the return value
is the new value. Otherwise, the current time is incremented by 1/KR, where KR is the orchestra control
rate. Then, the current value shall be set to o + (1 – [n – o] 2 –t / htime), where t is the current time, n is the
new value, and o is the old value.

NOTE

The port opcode does not have a “proper” representation of time, but infers it from the number of calls. If
the same state of port is referenced twice in the same k-cycle, then the effective half-transition time is half
as long as given by htime.

5.5.9.2 hipass
aopcode hipass(asig input, ksig cut)

The hipass core opcode high-pass filters its input signal. cut is the –6 dB cutoff point of the filter, and is
specified in Hz. It is a run-time error if cut is not strictly positive.

The particular method of high-pass filtering is not normative. Any filter with the specified characteristic
may be used.

The return value shall be the result of filtering input with a high-pass filter at cut.

NOTE

The hipass opcode is not required to have a “proper” representation of time, but is permitted to infer it from
the number of calls. If the same state of hipass is referenced twice in the same a-cycle, the result is
unspecified.

5.5.9.3 lopass
aopcode lopass(asig input, ksig cut)

The lopass core opcode low-pass filters its input signal. cut is the –6 dB cutoff point of the filter, and is
specified in Hz. It is a runtime error if cut is not strictly positive.

SAOL core opcode definitions and semantics Filters bandpass

99 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The particular method of low-pass filtering is not normative. Any filter with the specified characteristic
may be used.

The return value shall be the result of filtering input with a low-pass filter at cut.

NOTE

The lopass opcode is not required to have a “proper” representation of time, but is permitted to infer it from
the number of calls. If the same state of lopass is referenced twice in the same a-cycle, the result is
unspecified.

5.5.9.4 bandpass
aopcode bandpass(asig input, ksig cf, ksig bw)

The bandpass core opcode band-pass filters its input signal. cf is the centre frequency of the passband,
and is specified in Hz. bw is the bandwidth of the filter, measuring from the –6 dB cutoff point below the
centre frequency to the –6 dB point above, and is specified in Hz. It is a runtime error if cf and bw are not
both strictly positive.

The particular method of bandpass filtering is not normative. Any filter with the specified characteristic
may be used.

The return value shall be the result of filtering input with a bandpass filter with centre frequency cf and
bandwidth bw.

NOTE

The bandpass opcode is not required to have a “proper” representation of time, but is permitted to infer it
from the number of calls. If the same state of bandpass is referenced twice in the same a-cycle, the result is
unspecified.

5.5.9.5 bandstop
aopcode bandstop(asig input, ksig cf, ksig bw)

The bandstop core opcode band-stop (notch) filters its input signal. cf is the centre frequency of the
stopband, and is specified in Hz. bw is the bandwidth of the filter, measuring from the –6 dB cutoff point
below the centre frequency to the –6 dB point above, and is specified in Hz. It is a runtime error if cf and
bw are not both strictly positive.

The particular method of notch filtering is not normative. Any filter with the specified characteristic may be
used.

The return value shall be the result of filtering input with a bandstop filter with centre frequency cf and
bandwidth bw.

NOTE

The bandstop opcode is not required to have a “proper” representation of time, but is permitted to infer it
from the number of calls. If the same state of bandstop is referenced twice in the same a-cycle, the result is
unspecified.

SAOL core opcode definitions and semantics Filters biquad

100 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.9.6 biquad
aopcode biquad(asig input, ivar b0, ivar b1, ivar b2, ivar a1, ivar a2)

The biquad core opcode performs exactly normative filtering using the canonical second-order filter in a
“Transposed Direct Form II” structure. Using cascades of biquad opcodes allows the construction of
arbitrary filters with exactly normative results.

The return value is calculated as follows. On the first call to biquad with regard to a particular state, the
intermediate variables ti, to, w0, w1, and w2 are set to 0. Then, on the first call and each subsequent call,
the following pseudo-code defines the functionality:

ti := input + a1 * w1 + a2 * w2
to := b0 * ti + b1 * w1 + b2 * w2
w2 := w1
w1 := w0
w0 := ti

and the return value is to.

A runtime error is produced if this process produces out-of-bounds values (i.e., the filter is unstable).

The biquad opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of biquad is referenced twice in the same a-cycle, the effective sampling rate of the
filter is twice as high as the orchestra sampling rate.

5.5.9.7 allpass
aopcode allpass(asig input, ivar time, ivar gain)

The allpass core opcode performs allpass filtering on an input signal. The length of the feedback delay is
time and is specified in seconds. It is a run-time error if time is not strictly positive.

Let t be the value time * SR, where SR is the orchestra sampling rate. On the first call to comb with regard
to a particular state, a delay line of length t is initialised and set to all zeros.

On the first and each subsequent call, let x be the value which was inserted into the delay line t calls ago, or
0 if there have not been t calls to this state. Insert the value x * gain + input into the beginning of the
delay line. The output shall be x – input * gain.

NOTE

The allpass opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of allpass is referenced twice in the same a-cycle, then the effective allpass length is
half as long as len.

5.5.9.8 comb
aopcode comb(asig input, ivar time, ivar gain)

The comb core opcode performs comb filtering on an input signal. The length of the feedback delay is time
and is specified in seconds. It is a run-time error if time is not strictly positive.

Let t be the value time * SR, where SR is the orchestra sampling rate. On the first call to comb with regard
to a particular state, a delay line of length t is initialised and set to all zeros.

SAOL core opcode definitions and semantics Filters fir

101 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

On the first and each subsequent call, let x be the value which was inserted into the delay line t calls ago, or
0 if there have not been t calls to this state. Insert the value x * gain + input into the beginning of the delay
line. The return value shall be x.

NOTE

The comb opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. That is, if the same state of comb is referenced twice in the same a-cycle, the effective length is half
of t.

5.5.9.9 fir
aopcode fir(asig input, ksig b0[, ksig b1, ksig b2, ksig …])

The fir core opcode applies a specified FIR filter of arbitrary order to an input signal. The particular
method of implementing FIR filters is not specified and left open to implementors.

The parameters b0, b1, b2, … specify a FIR filter

H(z) = b0 + b1 z-1 + b2 z-2 + …

The return value shall be the successive values given by the application of this filter to the signal given by
the value of input in successive calls to fir.

NOTE

The fir opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of fir is referenced twice in the same a-cycle, the effective filter sampling rate is double
that of the orchestra sampling rate.

5.5.9.10 iir
aopcode iir(asig input, ksig b0[, ksig a1, ksig b1, ksig a2, ksig b2, ksig …])

The iir core opcode applies a specified IIR filter of arbitrary order to an input signal. The particular
method of implementing IIR filters is not specified and left open to implementors.

The parameters b0, b1, b2, … and a1, a2, … specify an IIR filter

Λ
Λ

++
+++= −−

−−

21

21

)(
zz

zz
zH

a2a1
b2b1b0

.

The return value shall be the successive values of the signal given by the application of this filter to the
signal given by input in successive calls to iir . It is a run-time error if this application produces out-of-
range values (that is, if the filter is unstable).

NOTE

The iir opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of iir is referenced twice in the same a-cycle, the effective filter sampling rate is double
that of the orchestra sampling rate.

SAOL core opcode definitions and semantics Filters firt

102 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.9.11 firt
aopcode firt(asig input, table t[, ksig order])

The firt core opcode applies a specified FIR filter of arbitrary order, given in a table, to an input signal. The
particular method of implementing FIR filters is not specified and left open to implementors.

The values stored in samples 0, 1, 2, … order of table t specify a FIR filter

H(z) = t[0] + t[1] z-1 + t[2] z-2 + … t[order-1] z-order+1

where array notation is used to indicate wavetable samples. If order is not given or is greater than the size
of the wavetable t, then order shall be set to the size of the wavetable. It is a run-time error if order is zero
or negative.

The return values shall be the successive values of the signal given by the application of this filter to the
signal given by the value of input in successive calls to firt.

NOTE

The firt opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of firt is referenced twice in the same a-cycle, the effective filter sampling rate is double
that of the orchestra sampling rate.

5.5.9.12 iirt
aopcode iirt(asig input, table a, table b, ksig order)

The iirt core opcode applies a specified IIR filter of arbitrary order, given in two tables, to an input signal.
The particular method of implementing IIR filters is not specified and left open to implementors.

The values stored in samples 1, 2, … order of table a and samples 0, 1, 2, …, order of wavetable b specify
a IIR filter

Λ
Λ

++
+++= −−

−−

21

21

]2[]1[

]2[]1[]0[
)(

zz

zz
zH

aa
bbb

where array notation is used to indicate wavetable samples. (Note that sample 0 of wavetable a is not used).
If order is not given or is greater than the size of the larger of the two wavetables, then order shall be set to
the size of the greater of the two wavetables. If one wavetable is smaller than given by order, then the
“extra” values shall be taken as zero coefficients It is a run-time error if order is zero or negative.

The return values shall be the successive values of the signal given by the application of this filter to the
signal given by the value of input in successive calls to iirt. It is a run-time error if this application
produces out-of-range values (that is, if the filter is unstable).

NOTE

The iirt opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of iirt is referenced twice in the same a-cycle, the effective filter sampling rate is double
that of the orchestra sampling rate.

SAOL core opcode definitions and semantics Spectral analysis fft

103 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.10 Spectral analysis

5.5.10.1 fft
specialop fft(asig input, table re, table im[, ivar len, ivar shift, ivar size,
table win])

The fft core opcode calculates windowed and overlapped DFT frames and places the complex-valued result
in two tables. It is a “special opcode”; that is, it accepts values at the audio rate, but only returns then at the
control rate.

There are several optional parameters. len specifies the length of the sample frame (the number of input
samples to use). If len is zero or not provided, it is set to SR/KR, where SR is the orchestra sampling rate
and KR is the orchestra control rate. shift specifies the number of samples by which to shift the analysis
window. If shift is zero or not provided, it is set to len. size is the length of the DFT calculated by the
opcode. If size is zero or not provided, it is set to len. win is the analysis window to apply to the analysis.
If win is not provided, a boxcar window of length len is used.

It is a runtime error if any of the following apply: len is negative, shift is negative, size is negative, win has
fewer than len samples, re has fewer than size samples, or im has fewer than size samples.

The calculation of this opcode is as follows: On the first call to the fft opcode with respect to a particular
state, a holding buffer of length len is created. On each a-rate call to the opcode, the input sample is
inserted into the buffer. When there are len samples in the buffer, the following steps are performed:

1. A new buffer is created of length size, for which each value new[i] is set to the value buf[i] * win[i],
where new[i] is the ith value of the new buffer, buf[i] is the value of the holding buffer, and win[i] is
the value of the ith sample in the analysis-window wavetable. (The new buffer contains the pointwise
product of the holding buffer and the analysis window). If size > len, then the values of new[i] for i >
len are set to zero. If size < len, then only the first size values of the holding buffer are used.

2. The first shift samples are removed from the holding buffer and the remaining len-shift samples shifted
to the front of the holding buffer. The shift samples at the end of the buffer after this shift are set to
zero. If shift > len, the holding buffer is cleared.

3. The real DFT of the new buffer is calculated, resulting in a length-size complex vector of frequency-
domain values. The real components of the DFT are placed in the first size samples of table re; the
imaginary components of the DFT are placed in the first size samples of table im. The DFT is arranged
such that the lowest frequencies, starting with DC, are at the zero point of the output tables, going up to
the Nyquist frequency at size/2; the reflection of the spectrum from the Nyquist to the sampling
frequency is placed in the second half of the tables.

The DFT is defined as

π

π

2

][
][0

2/∑
=

−

=

len

k

ijk kxe
id

where d[i] are the resulting complex components of the DFT, 0 < i < size;
x[k] are the input samples, 0 < k < len;
and j is the square root of –1.

SAOL core opcode definitions and semantics Spectral analysis ifft

104 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The return value on a particular k-cycle is 1 if a DFT was calculated since the last k-cycle, or 0 if one was
not.

The fft opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of fft is referenced twice in the same a-cycle, then the effective FFT period is half as long
as given by len and shift.

5.5.10.2 ifft
aopcode ifft(table re, table im[, ivar len, ivar shift, ivar size, table win])

The ifft core opcode calculates windowed and overlapped IDFTs and streams the result out as audio. re
and im are wavetables which contain the real and imaginary parts of a DFT, respectively. There are several
optional arguments which control the synthesis procedure. len is the number of output samples to use as
audio; if len is zero or not given, it is taken as SR/KR, where SR is the orchestra sampling rate and KR is
the orchestra control rate. shift is the number of samples by which the analysis window is shifted between
frames; if shift is not given or is zero, it is taken as len. size is the size of the IDFT; if size is not given or is
zero, it is taken as len. win is the synthesis window; if it is not given, a boxcar window of length len is
assumed.

It is a run-time error if any of the following apply: re or im are shorter than length size, win, if given, is
shorter than length len, or len, shift, or size are negative.

The calculation for this opcode is as follows. On the first call to ifft with respect to a particular state, the
size size IDFT of the tables re and im is calculated. If re and/or im are longer than size samples, only the
first size samples of these tables shall be used. The result of this IDFT is a sequence of size values,
potentially complex-valued. The real components of the first len elements of this sequence are multiplied
point-by-point by the corresponding samples of the window win and placed in an output buffer of length
len. (out[i] = seq[i] * win[i] for 0 < i < len).

The IDFT is calculated with the assumption that the lowest-numbered elements of the tables re and im are
the lowest frequencies of the audio signal, beginning with DC in sample 0, proceeding up to the Nyquist
frequency in sample size/2, and then the reflected spectrum in samples size/2 up to size-1.

The IDFT is defined as

π

π

2

][
][0

2/∑
==

len

k

ijk kde
ix

where d[i] are the complex frequency components of the DFT, 0 < i < size (d[i] = re[i] + j im[i])
x[k] are the input samples, 0 < k < len;
and j is the square root of –1.

Also on the first call to ifft with respect to a particular state, the output point of the synthesis is set to 0.

At each call to ifft, the following calculation is performed. The output value of the opcode is the value of
the output buffer at the output point. Then, the output point is incremented. If the output point is thereby
equal to shift, then the following steps shall be performed:

1. The first shift samples of the output buffer are discarded, the remaining len-shift samples of the output
buffer are shifted into the beginning of the buffer, and the last shift samples are set to 0.

SAOL core opcode definitions and semantics Gain control rms

105 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

2. The IDFT of the current values of the re and im wavetables is calculated as described above. The first
len values of the real part of the resulting audio sequence are multiplied point-by-point by the synthesis
window win, and the result is added point-by-point to the output buffer (out[i] = out[i] + seq[i] *
win[i] for 0 < i < len).

3. The output point is set to 0.

NOTE

The ifft opcode shall not have a “proper” representation of table, but shall infer it from the number of calls.
If the same state of ifft is referenced twice in the same a-cycle, the result is undefined.

EXAMPLE

The ifft and fft opcodes can be used together to write instruments that use FFT-based spectral modification
techniques, with logical syntax at the instrument level, in which the FFT frame rate is asynchronous with the
control rate. The structure of such an instrument is:

instr spec_mod() {
 asig out;
 ksig new_fft;
 ivar length;
 table t(empty,1025);

 length = 256;
 new_fft = fft(input,t,1024,length); // no windowing; place FFT in “t”
 if (new_fft) { // modify table data if there’s a new spectrum
 .
 .
 .
 }

 // and output IFFT
 out = ifft(out,t,1024,length);
 output(out);
 }

Thus, every 256 samples (assuming 256 is greater than the number of samples in the control period), we
compute the 1024-point IFFT. On those k-cycles during which we compute the FFT, we modify the table
values in some interesting way. The IFFT operator produces continuous output, where every 256 samples
the new table data is inspected and the IFFT calculated

There is nothing preventing us from manipulating the table data every control period, but only those values
present in the table at the IFFT times will actually be turned into sound.

FFTs and IFFTs do not need to be implemented in pairs; other methods (such as table calculations) can be
used to generate spectra to be turned into sound with IFFT, or rudimentary audio-pattern-recognition tools
can be constructed which compute functions of the FFT and return or export the results.

5.5.11 Gain control

5.5.11.1 rms
specialop rms(asig x[, ivar length])

The rms core opcode calculates the power in a signal. It is a “special opcode”; that is, it accepts values at
the audio rate, but only returns them at the k-rate.

SAOL core opcode definitions and semantics Gain control gain

106 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If length is not provided, it shall be set to the length of the control period. It is a run-time error if length is
provided and is negative. The length parameter is specified in seconds.

The return value is calculated as follows. Let l be the value floor(length * SR), where SR is the orchestra
sampling rate. A buffer b[], of length l, is maintained of the most recent values provided as the x parameter.
Each control period, the RMS of these values is calculated as

l

b[i]
p

l

i
∑

−

==

1

0

2

and the return value is p.

NOTE

The rms opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of rms is referenced twice in the same a-cycle, then the effective length is half as long as
given by length.

5.5.11.2 gain
aopcode gain(asig x, ksig gain[, ivar length])

The gain core opcode attenuates or increases the amplitude of a signal to make its power equal to a
specified power level.

If length is not provided, it shall be set to the length of the control period. It is a run-time error if length is
provided and is not strictly positive. The length parameter is specified in seconds.

The return value is calculated as follows. Let l be the value floor(length * SR), where SR is the orchestra
sampling rate.

At the first call to the opcode, the attenuation level is set to 1. At each subsequent call, the input value x
shall be stored in a buffer b[] of length l. When the buffer is full, the attenuation level is recalculated as

l

b[i]
l

i
∑

−

=

1

0

2

gain

and the buffer is cleared.

The return value at each call is x * A, where A is the current attenuation level.

NOTE

The gain opcode shall not have a “proper” representation of time, but shall infer it from the number of calls.
If the same state of gain is referenced twice in the same a-cycle, then the effective buffer length is half as
long as given by length.

SAOL core opcode definitions and semantics Gain control balance

107 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.11.3 balance
aopcode balance(asig x, asig ref[, ivar length])

The balance core opcode attenuates or increases the amplitude of a signal to make its power equal to the
power in a reference signal.

If length is not provided, it shall be set to the length of the control period. It is a run-time error if length is
provided and is not strictly positive. The length parameter is specified in seconds.

The return value is calculated as follows. Let l be the value floor(length * SR), where SR, is the orchestra
sampling rate.

At the first call to the opcode, the attenuation level is set to 1. At each subsequent call, the input value x
shall be stored in a buffer b[] of length l, and the input value ref stored in a buffer r[] of length l. When the
buffers are full, the attenuation level is recalculated as

l

b[i]

l

r[i]

l

i

l

i

∑

∑

−

=

−

=

1

0

2

1

0

2

and the buffer is cleared.

The return value at each call is x * A, where A is the current attenuation level.

NOTE

The balance opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of balance is referenced twice in the same a-cycle, then the effective buffer length is
half as long as given by length.

5.5.11.4 compress
aopcode compress(asig x, table t)

The compress core opcode performs waveform compression, expansion, waveshaping, or other waveform
manipulation of an input signal, by passing it through a lookup table.

The return value is calculated as follows: let l be the length of table t. Then, if the value x is greater than 1
or less than –1, it shall be clipped to 1 or –1 respectively. Then, let p be the value l * (x / 2 + 0.5). The
return value is the value of table t at sample p. If p is not an integer, the return value is interpolated from
nearby points as described in Subclause 1.X, with a maximum passband ripple of 2.5 dB, a minimum
stopband attenuation of 60 dB, and a maximum transition width of 10% of Nyquist..

5.5.11.5 pcompress
aopcode pcompress(asig x, table t[, ivar length])

SAOL core opcode definitions and semantics Gain control sblock

108 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The pcompress core opcode performs power-level compression, expansion, or other manipulation on an
input signal.

If length is not provided, it shall be set to the length of the control period. It is a run-time error if length is
provided and is not strictly positive. The length parameter is specified in seconds.

The return value is calculated as follows. Let l be the value floor(length * SR), where SR, is the orchestra
sampling rate.

At the first call to the opcode, the attenuation level is set to 1. At each subsequent call, the input value x
shall be stored in a buffer b[] of length l. When the buffer is full, the value p is calculated as

l

b[i]
p

l

i
∑

−

==

1

0

2

and the buffer is cleared. Let k be the length of table t. Then, if p is greater than 1 or less than –1, it is
clipped to 1 or –1 respectively, and the new attenuation level shall be set as the value of the table t at the
sample k * p. If this value is not an integer, the attenuation level shall be interpolated from nearby points
of t, as described in Subclause 1.X, with a maximum passband ripple of 2.5 dB, a minimum stopband
attenuation of 60 dB, and a maximum transition width of 10% of Nyquist..

The return value at each call is x * A, where A is the current attenuation level.

NOTE

The pcompress opcode shall not have a “proper” representation of time, but shall infer it from the number
of calls. If the same state of pcompress is referenced twice in the same a-cycle, then the effective buffer
length shall be half as long as given by length.

5.5.11.6 sblock
specialop sblock(asig x, table t)

The sblock core opcode creates control-rate blocks of samples and places them in a wavetable. It is a
“special opcode”; that is, it accepts values at the audio rate, but only returns them at the k-rate.

It is a run-time error if the table t is not allocated with as much space as there are samples in the control
period of the orchestra.

The return value of this opcode is always 0.

This opcode has side effects, as follows. Let k be the number of samples in a control period. At each k-
cycle, the most recent k values of x are placed in table t such that the oldest value is placed in sample 0.

NOTE

The sblock opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of sblock is referenced twice in the same a-cycle, then the samples placed in the
table shall be the interleaved values given in the two calls during the second half of the k-period.

SAOL core opcode definitions and semantics Sample conversion decimate

109 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.12 Sample conversion

5.5.12.1 decimate
specialop decimate(asig input)

The decimate core opcode decimates a signal from the audio rate to the control rate. It is a “special
opcode”; that is, it accepts values at the audio rate, but only returns them at the k-rate.

The return value is calculated as follows. Each k-cycle, one of the values given as input in the preceding k-
period of a-samples shall be returned.

NOTE

The decimate opcode is not required to have a “proper” representation of time, but is allowed to infer it
from the number of calls. If the same state of decimate is referenced twice in the same a-cycle, then the
return value for each call at the subsequent k-cycle may be taken from any of the values provided to the
state during the preceding k-period.

EXAMPLE

oparray decimate[2];
ksig a,b,c;

a = decimate[0](1);
b = decimate0;
c = decimate[1](2);

The value of a and b at each k-cycle shall be either 0 or 1, in an implementation-dependant manner. The
value of c shall be 2.

5.5.12.2 upsamp
asig upsamp(ksig input[, table win])

The upsamp core opcode upsamples a control signal to an audio signal. win is an optional interpolation
window. If win is not provided, it is taken to be a boxcar window (all values equal 1) of length SR / KR,
where SR is the orchestra sampling rate and KR is the orchestra control rate. If win is provided and is
shorter than SR / KR samples, it is zero-padded at the end to length SR/KR for use in this opcode.

On the first call to upsamp with regard to a particular state, an output buffer of length win is created and set
to zero. Also, the output point is set to 0.

On the first call to upsamp in a particular k-cycle with regard to a particular cycle, the output buffer is
shifted by SR / KR samples: the first SR / KR samples are discarded, the remaining samples are shifted to
the front of the output buffer, and the last SR / KR samples are set to 0. Then, the window function is
scaled by input and added into the output buffer (buf[i] = buf[i] + input * win[i], 0 < i < length(win)).
Then, the output point is set to 0.

On the first call and each subsequent call to upsamp, the return value is the value of the output buffer at the
current output point. Then, the output point shall be incremented.

It is a run-time error if the same state of upsamp is referenced more times than the length of win in a single
k-cycle.

SAOL core opcode definitions and semantics Delays downsamp

110 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.12.3 downsamp
specialop downsamp(asig input[, table win])

The downsamp core opcode downsamples an audio signal to a control signal. It is a “special opcode”; that
is, it accepts samples at the audio rate but only returns values at the control rate. win is an optional analysis
window.

It is a run-time error if win is shorter than SR * KR samples, where SR is the orchestra sampling rate and
KR is the orchestra control rate.

The return value is calculated as follows: at each k-cycle, the values of each sample of input provided in the
previous a-cycle are placed in a buffer. If win is not provided, then the return value is the mean of the
samples in the buffer. If win is provided, then the return value is calculated by multiplying the analysis
window point-by-point with the input signal (rtn = Σ input[i] * win[i] for 0 < i < SR * KR, where SR is
the orchestra sampling rate and KR is the orchestra control rate).

NOTE

The decimate opcode does not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of decimate is referenced twice in the same a-cycle, then the return value is
calculated from the input values in the second half of the k-cycle.

5.5.12.4 samphold
opcode samphold(sig input, ksig gate)

The samphold core opcode gates a signal with a control signal.

The return value is calculated as follows. On the first call to samphold with regard to a particular state, the
last passed value is set to 0. If the value of gate is non-zero, then the last passed value is set to input. The
last passed value is returned.

5.5.13 Delays

5.5.13.1 delay
aopcode delay(asig x, ivar t)

The delay opcode implements a fixed-length end-to-end (i.e., untapped) delay line. t gives the length of the
delay line in seconds. It is a run-time error if t < 0, unless the terminal is running in a negative-time
universe.

Let y be floor(t * SR) samples, where SR is the orchestra sampling rate. At each call to delay with respect
to a particular opcode state, the value of x is inserted into a FIFO buffer of length y. The return value is the
value which was inserted into the delay line y calls ago to delay with regard to the same state.

NOTE

The delay opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of delay is referenced twice in the same a-cycle, then the effective delay line is half
as long as given by t.

SAOL core opcode definitions and semantics Delays delay1

111 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.5.13.2 delay1
aopcode delay1(asig x)

The delay1 opcode implements a single-sample delay.

At each call to delay1 with regard to a particular state, the value of x is stored, and the return value is the
value stored on the previous call.

NOTE

The delay1 opcode shall not have a “proper” representation of time, but shall infer it from the number of
calls. If the same state of delay1 is referenced twice in the same a-cycle, then the return value for the
second call is the parameter value of the first.

5.5.13.3 fracdelay
aopcode fracdelay(ksig method[, xsig p1, xsig p2])

The fracdelay core opcode implements fractional, variable-length, and/or multitap delay lines. Several
methods for manipulating the delay line are provided; in this way, fracdelay is like an object-oriented
delay-line “class”.

The semantics of p1and p2 and the calculation of the return value differ depending on the value of method.
It is a run-time error if method is less than 1 or greater than 4.

If method is 1, the “initialise” method is specified. In this case, p1 is the length of the delay line in
seconds. It is a run-time error if p1 is not provided, or is less than 0. Any currently existing delay line in
this opcode state shall be destroyed, a new delay line with the specified length (floor(p1* SR), where SR is
the orchestra sampling rate) shall be created, and all values on this delay line shall be initialised to 0. The
return value is 0. p2 is not used, and is ignored if provided.

If method is 2, the “tap” method is specified. In this case, p1 is the position of the tap in seconds. It is a
run-time error if method 1 has not yet been called for this opcode state, or if p1 is not provided, or if p1 is
less than 0, or if p1 is greater than the most recent initialisation length. The return value is the current value
of the delay line at position p1 * SR, where SR is the orchestra sampling rate. If p1 * SR is not an integer,
the return value must be interpolated from the nearby values, as described in Subclause 1.X, with a
maximum passband ripple of 1 dB, a minimum stopband attenuation of 80 dB, and a maximum transition
width of 10% of Nyquist. p2 is not used, and is ignored if provided.

If method is 3, the “set” method is specified. In this case, p1 is the position of the insertion in seconds, and
p2 is the value to insert. It is a run-time error if method 1 has not yet been called for this opcode state, or if
p1 is not provided, or if p1 is less than 0, or if p1is greater than the most recent initialisation length, or if p2
is not provided. The value of the delay line at position floor(p1 * SR), where SR is the orchestra sampling
rate, is updated to p2. The return value is 0.

If method is 4, the “add into” method is specified. In this case, p1 is the position of the insertion in
seconds, and p2 is the value to add in. It is a run-time error if method 1 has not yet been called for this
opcode state, or if p2 is not provided. Let x be the current value of the delay line at position floor(p1 *
SR), where SR is the orchestra sampling rate; then, the value of the delay line at this position is updated to x
+ p2. The return value is x + p2.

If method is 5, the “shift” method is specified. It is a run-time error if method 1 has not yet been called for
this opcode state. All values of the delay line are shifted forward by one sample; that is, for each sample x
where 0 < x <= L, where L is the length of the delay line, the new value of sample x of the delay line is the

SAOL core opcode definitions and semantics Effects reverb

112 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

current value of sample x – 1. Sample 0 is set to value 0. The return value is the value shifted “off the end”
of the delay line, that is the current value of sample L. p1and p2 are not used, and are ignored if provided.

EXAMPLE

The following block diagram is implemented by the user-defined opcode which follows it. We assume that
the orchestra sampling rate is 10 Hz for clarity.

aopcode example(asig a) {
 asig t1, t2, t3, x, first;
 oparray fracdelay[1];

 if (!first) {
 fracdelay[0](1,1); // initialise to 1 sec long
 first = 1;
 }

 // flow network
 fracdelay[0](3,0,a); // insert a at beginning
 t1 = fracdelay[0](2,0); // tap at 0
 t2 = fracdelay[0](2,0.3); // tap at 0.3
 t3 = fracdelay[0](2,0.5); // tap at 0.5
 fracdelay[0](4,0.1,t3); // feedback
 fracdelay[0](4,0.8,t1+t2); // feedforward
 x = fracdelay[0](5); // shift and get output
 return(x);
}

Notice the use of the oparray construction to implement this network. If an oparray is not used, then each
call to fracdelay refers to a different delay line, and the algorithm makes no sense. Also note that
fracdelay, unlike delay, does not shift automatically. For “typical” operations, method 5 should be called
once per a-cycle.

5.5.14 Effects

5.5.14.1 reverb
aopcode reverb(asig x, ivar f0[, ivar r0, ivar f1, ivar r1, ivar …])

The reverb core opcode produces a reverberation effect according to the given parameters.

It is a run-time error if any f or r value is negative, or if there are an even number of parameters greater than
2.

If only one value f0 is given as an argument, it is taken as a full-range reverberation time, that is, the amount
of time delay until the sound amplitude is attenuated 60 dB compared to the source sound (RT60).

If more values are given, the f – r pairs represent responses at different frequencies. At each frequency f
given as a parameter, the reverberation time (RT60) at that frequency is given by the corresponding r value.

a

t3

t1

t2

x

SAOL core opcode definitions and semantics Effects chorus

113 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The exact method of calculating the reverberation according to the specified parameters is not normative. If
content authors wish to have exactly normative reverberations, they can easily be authored using the comb,
allpass, biquad, delay, fracdelay, and other strictly normative core opcodes (q.v.).

The output shall be the reverberated sound signal.

5.5.14.2 chorus
asig chorus(asig x, ksig rate, ksig depth)

The chorus core opcode creates a sound with a chorusing effect, with rate rate and depth depth, from the
input sound x. rate is specified in cycles per second; depth is specified as percent excursion.

The exact method of chorusing is non-normative and left open to implementors.

5.5.14.3 flange
asig flange(asig x, ksig rate, ksig depth)

The flange core opcode creates a sound with a flanged effect, with rate rate and depth depth, from the
input sound x. rate is specified in cycles per second; depth is specified as percent excursion.

The exact method of flanging is non-normative and left open to implementors.

SAOL core wavetable generators Introduction flange

114 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.6 SAOL core wavetable generators

5.6.1 Introduction

This Subclause describes each of the core wavetable generators in SAOL. All core wavetable generators
shall be implemented in every terminal complying to Profile 4.

For each core wavetable generator, the following is described:

• A usage description, showing the parameters which must be provided in a table definition
utilising this core wavetable generator.

• The normative semantics of the generator. These semantics describe how to calculate values
and place them in the wavetable for each table definition using this generator.

For each core wavetable generator, the first field in the table definition is the name of the generator, and the
value of the expression in the second field is the size of the wavetable. Many wavetable generators also
allow the value –1 in this field to signify dynamic calculation of the wavetable size. If the size is not –1,
and is also not strictly greater than zero, then the syntax of the generator call is illegal. In each case, the
size parameter shall be rounded to the nearest integer before evaluating the semantics as described below.

The subsequent expressions are the required and optional parameters to the generator. For ease of
exposition, each of these parameter fields will be given a name in the description of the generators, but there
is no normative significance to these names. Parameter fields enclosed in brackets are optional and may or
may not occur in a table definition using that generator.

Each wavetable, as well as a block of data, has four parameters associated with it: the sampling rate loop
start, loop end, and base frequency. For all wavetable generators except sample, these parameters shall be
set to zero initially.

5.6.2 Sample
t1 table(sample, size, which[, skip])

The sample core wavetable generator allows the inclusion of audio samples (or other blocks of data) in the
bitstream and subsequent access in the orchestra.

If size is –1, then the size of the table shall be the length of the audio sample. If size is given, and larger
than the length of the audio sample, then the audio sample shall be zero-padded at the end to length size. If
size is given, and smaller than the length of the audio sample, only the first size samples shall be used.

The which field identifies a sample. It is either a symbol, in which case the generator refers to a sample in
the bitstream, by symbol number; or a number, in which case the generator refers to a sample stored as an
AudioClip in the BIFS scene graph (ISO 14496-1 Subclause XXX).

In the case where the generator refers to a sample in the bitstream, for compliant bitstream implementations,
the sample data is simply a stream of raw floating-point values. This sample block of data shall be placed in
the wavetable. If the bitstream sample data block contains sampling rate, loop start, loop end, and/or base
frequency values, these parameters of the wavetable shall be set accordingly. If the sampling rate is not
provided, it shall be set to the orchestra sampling rate by default. Any other parameters not so provided
shall be set to 0.

SAOL core wavetable generators Data flange

115 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

In the case where the generator refers to a sample stored as an AudioClip, other audio coders described in
this Part of ISO 14496 may be used to compress samples. The children fields of the AudioSource node
responsible for instantiation of this orchestra refer to AudioClip nodes. Each AudioClip contains, after
buffering as described in ISO 14496-1 Subclause XXX, several channels of audio data. If the first child has
n1 channels, the second n2 channels, and so forth up to child k, then this AudioSource node has K = n0 + n1

+ ... + nk channels in all, and which shall be a value between 0 and K-1. Channel which (where which is
rounded to the nearest integer if necessary), numbering in order across children and their channels, shall be
placed in the bitstream. The sampling rate of the wavetable shall be set to the sampling rate of the
AudioClip node from which channel which is taken. The loop start, loop end, and base frequency values
shall be set to 0.

If the isReady flag of the selected AudioClip node is not set when the generator is executed, then the
bitstream is in error. That is, this form of this generator must only be used in cases where there is time
allotted in the bitstream for the other decoders to produce samples (in real-time) before the generator
executes. This is likely done by including the table generator in a score line scheduled to execute after the
Composition Time (see ISO 14496-1 Subclause XXX) of the last audio Access Unit needed in the
AudioClip node.

For standalone systems such as authoring tools, implementors are encouraged to provide access to other
audio file formats and disk file access using this field (for example, to allow a filename as a string constant
here). However, the only normative aspect is that in which the tokenised bitstream element for the
generator refers to a sample element in the bitstream.

If skip is provided and is a positive value, it is rounded to the nearest integer, and the data placed in the
wavetable begins with sample skip+1 of the bitstream or AudioClip sample data.

5.6.3 Data
t1 table(data, size, p1, p2, p3, ...)

The data core wavetable generator allows the orchestra to place data values directly into a wavetable.

If size is –1, then the size of the table shall be the number of data values specified. If size is given, and
smaller than the number of data values, then the wavetable shall be zero-padded at the end to length size. If
size is given, and larger than the number of data values, then only the first size values shall be used.

The p1, p2, p3 ... fields are floating-point values which shall be placed in the wavetable

5.6.4 Random
t1 table(random, size, dist, p1[, p2])

The random core wavetable generator fills a wavetable with pseudo-random numbers according to a given
distribution. For all pseudo-random number generation algorithms, they shall be reseeded upon orchestra
startup such that each execution of an orchestra containing these instructions generates different numbers.

If size is –1, the generator is illegal and a run-time error generated. If the size field is a positive value, then
this shall be the length of the table, and this many independent random numbers shall be computed to place
in the table.

The dist field specifies which random distribution to use, and the meanings of the p1 and p2 fields vary
accordingly.

SAOL core wavetable generators Step flange

116 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If dist is 1, then a uniform distribution is used. Pseudo-random numbers are computed such that all
floating-point values between p1 and p2 inclusive have equal probability of being chosen for any sample.

If dist is 2, then a linearly ramped distribution is used. Pseudo-random numbers are computed such that the
probability distribution function of choosing x for any sample is given by

 p(x) = 0 if x ≤ p1 or x > p2, or
 abs(2 / (p2 – p1) x [(x – p1) / (p2 – p1)]) otherwise.

 A run-time error is generated if dist is 2 and p1 = p2.

If dist is 3, then an exponential distribution is used. Pseudo-random numbers are computed such that the
probability distribution function of choosing x for any sample is

p(x) = 0 if x ≤ 0, or
k exp(-kx), where k = 1 / p1, otherwise.

If dist is 3, then p2 is not used and is ignored if it is provided.

If dist is 4, then a Gaussian distribution is used. Pseudo-random numbers are computed such that the
probability distribution function of choosing x for any sample is

var

varmean

×

−−

=
π2

)2/()(2

)(
xe

xp ,

that is, p(x) ~ N(p1, p2) where p1 is the mean and p2 the variance of a normal distribution.

If dist is 4, then p2 shall be strictly greater than 0, otherwise a run-time error is generated.

If dist is 5, then a Poisson process is modelled, where the mean number of samples between 1’s is given by
an exponential distribution with mean p1. A pseudo-random value is computed according to p(x) as given
for dist = 3 (the exponential distribution), above. This value is rounded to the nearest integer y. The first y
values of the table (elements 0 through y-1) are set to 0, and the next value (element y) to 1. Another
pseudo-random value is computed as if dist =3, and rounded to the nearest integer z. The next z values
(elements y + 1 through y + z in the table) are set to 0, and the next value (element y + z + 1) to 1. This
process is repeated until the table is full through element size. The resulting table has length size regardless
of the values generated in the pseudo-random process; the last element may be a zero or 1.

If dist is 5, then p2 is not used and is ignored if provided.

If dist is less than 0 or greater than 5, a run-time error is generated.

5.6.5 Step
t1 table(step, size, x1, y1, x2, y2, ...)

The step core wavetable generator allows arbitrary step functions to be placed in a wavetable. The step
function is computed from pairs of (x, y) values.

If size is –1, then the size of the wavetable shall be the size of the largest x-value parameter. If size is larger
than the largest x-value parameter, then the wavetable shall be padded with 0 values at the end to size size.
If size is smaller than the largest x-value provided, then only the first size values shall be computed and
used.

SAOL core wavetable generators Lineseg flange

117 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

It is a run-time error if:
- x1 is not 0,
- the x-values are not a non-decreasing sequence, or
- there are an even number of parameters, not counting the size parameter.

For the step generator, sample values 0 through x2-1 shall be set to y1, x2 through x3-1 shall be set to y2,
x3 through x4-1 shall be set to y3, and so forth.

5.6.6 Lineseg
t1 table(lineseg, size, x1, y1, x2, y2, ...)

The lineseg core wavetable generator allows arbitrary line-segment functions to be placed in a wavetable.
The line segment function is computed from pairs of (x, y) values.

If size is –1, then the size of the wavetable shall be the size of the largest x-value parameter. If size is larger
than the largest x-value parameter, then the wavetable shall be padded with 0 values at the end to size size.
If size is smaller than the largest x-value provided, then only the first size values shall be computed and
used.

It is a run-time error if:
- x1 is not 0,
- the x-values are not a non-decreasing sequence, or
- there are an odd number of parameters, not counting the size parameter.

For the step generator, sample values for samples
x in the range x1 through x2 shall be set to y1 + (y2-y1)(x – x1) / (x2 – x1),
x in the range x2 through x3 shall be set to y2 + (y3-y2)(x – x2) / (x3 – x2),

and so forth.

If any two successive x-values are equal, a discontinuous function is generated, and no values shall be
calculated for the “range” corresponding to those values.

5.6.7 Expseg
t1 table(expseg, size, x1, y1, x2, y2, ...)

The expseg core wavetable generator allows arbitrary exponential-segment functions to be placed in a
wavetable. The function is computed from pairs of (x, y) values.

If size is –1, then the size of the wavetable shall be the size of the largest x-value parameter. If size is larger
than the largest x-value parameter, then the wavetable shall be padded with 0 values at the end to size size.
If size is smaller than the largest x-value provided, then only the first size values shall be computed and
used.

It is a run-time error if:

- x1 is not 0,
- the x-values are not a non-decreasing sequence,
- the y-values are not all of the same sign,
- any y-value is equal to 0, or
- there are an odd number of parameters, not counting the size parameter.

SAOL core wavetable generators Cubicseg flange

118 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

For the expseg generator, sample values for samples
 x in the range x1 through x2 shall be set to y1(y2/y1) (x-x1)/(x2-x1),
 x in the range x2 through x3 shall be set to y2(y3/y2) (x-x1)/(x2-x1),

and so forth.

If any two successive x-values are equal, a discontinuous function is generated, and no values shall be
calculated for the “range” corresponding to those values.

5.6.8 Cubicseg
t1 table(cubicseg, size, infl1, y1, x1, y2, infl2, y3, x2, y4, infl3,...)

The cubicseg core wavetable generator creates a function made up of segments of cubic polynomials. Each
segment is specified in terms of endpoints and an inflection point. If, for successive segments, the y-values
at the inflection points are between the y-values at the endpoints, then the function is smooth; otherwise, the
function is pointy or “comb-like”.

If size is –1, then the size of the wavetable shall be the size of the largest x-value parameter. If size is larger
than the largest x-value parameter, then the wavetable shall be padded with 0 values at the end to size size.
If size is smaller than the largest x-value provided, then only the first size values shall be computed and
used.

It is a run-time error if:

- infl1 is not 0,
- the x-values are not a non-decreasing sequence,
- any infl-value is not strictly between the two surrounding x-values,
- there are less than two x-values, or
- the sequence of control values does not end with an infl-value

For the cubicseg generator, sample values for samples
 x in the range infl1 to infl2 shall be set to ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients of a
cubic polynomial which passes through (infl1,y1), (x1,y2), and (infl2,y3) and which has 0 derivative at x1;
 x in the range infl2 to infl3 shall be set to ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients of a
cubic polynomial which passes through (infl2,y3), (x2,y4), and (infl3,y5) and which has 0 derivative at x2;
 and so on.

If, for any segment, such a cubic polynomial does not exist or does not have real values through the segment
range, it is a run-time error.

5.6.9 Spline
t1 table(spline, size, x1, y1, x2, y2, ...)

The spline core wavetable generator creates a smoothly varying “spline” function for a set of control points.

If size is –1, then the size of the wavetable shall be the size of the largest x-value parameter. If size is larger
than the largest x-value parameter, then the wavetable shall be padded with 0 values at the end to size size.
If size is smaller than the largest x-value provided, then only the first size values shall be computed and
used.

It is a run-time error if:

SAOL core wavetable generators Polynomial flange

119 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

- x1 is not 0,
- the x-values are not a non-decreasing sequence,
– there are less than two x-values, or
- there are an odd number of parameters, not counting the size parameter.

For the spline generator, sample values for samples
 x in the range x1 to x2 shall be set to ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients of a
cubic polynomial which passes through (x1,y1), and (x2,y2) and which has derivative 0 at x1 and derivative
k2 at x2;
 x in the range x2 to x3 shall be set to ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients of a
cubic polynomial which passes through (x2,y2), and (x3,y3) and which has derivative k2 at x2 and
derivative k3 at x3;
 x in the range x3 to x4 shall be set to ax3 + bx2 + cx + d, where a, b, c, and d are the coefficients of a
cubic polynomial which passes through (x3,y3), and (x4,y4) and which has derivative k3 at x3 and
derivative k4 at x4; and so on.

The derivative of the last cubic Subclause shall be zero at xn, the last x-point of the sequence.

If, for any segment, such a cubic polynomial does not exist or is not real-valued over the segment range, it is
a run-time error.

5.6.10 Polynomial
t1 table(polynomial, size, xmin, xmax, a0, a1, a2, ...)

The polynomial core wavetable generator allows an arbitrary section of an arbitrary polynomial function to
be placed in a wavetable. The polynomial function used is p(x) = a0 + a1x + a2x2 + ...; it is evaluated over
the range [xmin, xmax].

It is a run-time error if size is not strictly positive, or if there are not at least 3 parameters, not counting the
size parameter, or if xmin = xmax.

For the polynomial generator, the sample value for sample x in the range [0,size-1] inclusive shall be set to

a0 + a1y + a2y2 + ..., where y = xmin + (size - x) / size × (xmax – xmin).

5.6.11 Window
t1 table(window, size, type[, p])

The window core wavetable generator allows a windowing function to be placed in a table.

It is a run-time error if the size parameter is not strictly positive, or if type = 5 and the p parameter is not
included.

The window type is specified by the type parameter. This parameter shall be rounded to the nearest integer,
and then interpreted as follows:

If type=1, a Hamming window shall be used. For sample number x in the range [0, size – 1], the value
placed in the table shall be

[XXX to be completed in editing]

SAOL core wavetable generators Harm flange

120 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If type=2, a Hanning (raised cosine) window shall be used. For sample number x in the range [0, size – 1],
the value placed in the table shall be

cos ((x - size) / size × π/2).

If type=3, a Bartlett (triangular) window shall be used. For sample number x in the range [0, size – 1], the
value placed in the table shall be

1 - | (size/2 – x) / (size/2) |.

If type=4, a Gaussian window shall be used. For sample number x in the range [0, size – 1], the value
placed in the table shall be

v

vxme
×

−−

π2

)2/()(2

, where m = size/2 and v = (size/6)1/2.

If type=5, a Kaiser window shall be used, with parameter p. For sample number x in the range [0, size –
1], the value placed in the table shall be

[XXX to be completed in editing]

If type=6, a boxcar window shall be used. Each sample in the range [0, size – 1] shall be given the value 1.

5.6.12 Harm
t1 table(harm, size, f1, f2, f3...)

The harm generator creates one cycle of a composite waveform made up of a weighted sum of zero-phase
sinusoids.

It is a run-time error if size is not strictly positive.

For each sample x in the range [0, size –1], the sample shall be assigned the value

f1 sin (2 π x/size) + f2 sin (4 π x/size) + f3 sin (6 π x/size) + ...

5.6.13 Harm_phase
t1 table(harm_phase, size, f1, ph1, f2, ph2, ...)

The harm_phase core wavetable generator creates one cycle of a composite waveform made up of a
weighted sum of zero-DC sinusoids, each with specified initial phase in radians.

It is a run-time error if size is not strictly positive, or if there are an odd number of parameters, not counting
the size parameter.

For each sample x in the range [0, size –1], the sample shall be assigned the value

f1 sin (2 π x/size + ph1) + f2 sin (4 π x/size + ph2) + f3 sin (6 π x/size + ph3) + ...

SAOL core wavetable generators Periodic flange

121 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.6.14 Periodic
t1 table(periodic, size, p1, f1, ph1, p2, f2, ph2, ...)

The periodic core wavetable generator creates one cycle of an arbitrary periodic waveform, parametrised as
the sum of several sinusoids with arbitrary frequency, magnitude and phase. The phase values (ph1, ph2,
...) are specified in radians.

It is a run-time error if size is not strictly positive, or if the number of parameters, not counting the size
parameter, is not evenly divisible by three.

For each sample x in the range [0, size –1], the sample shall be assigned the value

f1 sin (2 p1π x/size + ph1) + f2 sin (2 p2 π x/size + ph2) + f3 sin (2 p3 π x/size + ph3) + ...

Any of the p1, p2, p3, etc. values may be zero, in which case the corresponding term of the calculation is a
DC term; or non-integral, in which case there is a discontinuity at the table wrap point, or negative, which
means the corresponding term evolves as a negative phase term. In all cases, the above value expression
holds as specified.

5.6.15 Buzz
t1 table(buzz, size, numh, lowh, fl, r)

The buzz core wavetable generator creates one cycle of the sum of a series of spectrally-sloped cosine
partials (band-limited pulse train). This waveform is a good source for subtractive synthesis.

It is a run-time error if size is not strictly positive, and numh is also not strictly positive.

lowh and numh shall be rounded to the nearest integer before further processing.

If size is not strictly positive, then the size of the table is given by the highest harmonic included, such that
size = 2 (lowh + numh).

If numh is not strictly positive, then the number of harmonics shall be given by the size of the table, such
that numh is the greatest integer smaller than size/2 – lowh.

For each sample x in the range [0, size –1], the sample shall be assigned the value

If fl is negative, then alternating partials alternate phase direction; if |r| < 1, then partials attenuate as they
get higher in frequency; otherwise, they stay the same or grow in magnitude; in all cases, the above value
expression holds as specified.

5.6.16 Concat
table t1(concat, size, ft1, ft2, ...)

The concat generator allows several tables to be concatenated together into a new table.

It is a runtime error if no tables are provided as arguments.

SAOL core wavetable generators Empty flange

122 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If size is not strictly positive, the size of the wavetable shall be the sum of the sizes of the parameter
wavetables. If size is strictly positive, but smaller than the sum of the sizes of the parameter wavetables,
then only the first size points of the parameter wavetables shall be used. If size is larger than the sum of the
sizes of the parameter wavetables, then the generated wavetables shall be zero-padded at the end to size
size.

The values of the wavetable shall be calculated as follows: for each sample x in the range [0, s1-1], where
s1 is the size of the wavetable referenced by p1, the sample shall be assigned the same value as sample x of
p1; for each sample x in the range [s1, s1+s2-1], where s2 is the size of the wavetable referenced by p2, the
sample shall be assigned the same value as sample x – s1 of p2; and so on, up to sample size.

5.6.17 Empty
t1 table(empty,size)

The empty generator allocates space and fills it with zeros.

It is a run-time error if size is not strictly positive.

For each sample in the range [0,size-1], the sample is assigned value 0.

This generator is useful in conjunction with user-defined opcodes that fill up a table with data.

SASL syntax and semantics Introduction flange

123 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.7 SASL syntax and semantics

5.7.1 Introduction

This Subclause describes the syntax and semantics of the score language SASL. SASL allows the simple
parametric description of events which use an orchestra to generate sound, including notes, controllers, and
dynamic wavetable generation. SASL is simpler than many previously existing score languages; this is
intentional, as it enables easier cross-coding of score data from other formats into SASL. Since in many
cases, SASL code is automatically generated by authoring tools, it is not a great disadvantage to have
relatively simple syntax and few “defaults”.

As with the SAOL description in Subclause 5.4, this Subclause describes a textual representation of SASL
which is standardised, but stands outside of the bitstream-decoder relationship. It also describes the
mapping between the textual representation and the bitstream representation. The exact normative
semantics of SASL will be described in reference to the textual representation, but also apply to the
tokenised bitstream representation as created via the normative tokenisation mapping.

All times in the score file (start times and durations) are specified in score time, which is measured in
beats. By default, the score time is equivalent to the absolute time, and thus events with duration of one
beat last one second, and an event dispatched two beats of score time after another is dispatched two
seconds later by the scheduler. However, this mapping can be changed with the tempo command, see
below.

[What happens if an event gets received in streaming score data and the time has already gone by?]

5.7.2 Syntactic Form

<score file> -> <score line> [<score file>]
<score file> -> <score line>

<score line> -> <instr line> <newline>
<score line> -> <control line> <newline>
<score line> -> <tempo line> <newline>
<score line> -> <table line> <newline>
<score line> -> <end line> <newline>

<instr line> -> [<ident> :] <number> <ident> <number> <pflist>

<control line> -> <number> [<ident>] control <ident> <number>

<tempo line> -> <number> tempo <number>

<table line> -> <number> table <ident> <ident> <pflist>

<end line> -> <number> end

<pflist> -> <number> [<pflist>]
<pflist> -> <NULL>

<number> as given in Subclause 5.4.2.3.

SASL syntax and semantics Instr line flange

124 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

<ident> as given in Subclause 5.4.2.2.

5.7.3 Instr line

The instr line specifies the construction of an instrument instantiation at a given time.

The first identifier, if given, is a label which is used to identify the instantiation for use with further control
events.

The first number is the score time of the event. As much precision as desired may be used to specify times;
however, instruments are only dispatched as fast as the orchestra control rate, as described in Subclause
5.3.3.3. Event times do not have to be received, or present in the score file, in temporal order.

The second identifier (the first required identifier) is the name of the instrument, used to select one
instrument from the orchestra described in the SAOL file. It is a syntax error if there is not an instrument
with this name in the orchestra when the orchestra is started.

The second number is the score duration of the instrument instance. When the instrument instantiation is
created, a termination event shall be scheduled (see Subclause 5.3.3.3) at sum of the instantiation time and
the duration. If this field is –1, then the instrument shall have no scheduled duration.

The pflist is the list of parameter fields to be passed to the instrument instance when it is created. If there
are more pfields specified in the instrument declaration than elements of this list, the remaining pfields shall
be set to 0 upon instantiation. If there are fewer pfields than elements, the extra elements shall be ignored.

5.7.4 Control line

The control line specifies a control instruction to be passed to the orchestra, or to a set of running
instruments.

The first number is the score time of the control event. When this time arrives in the orchestra, the control
event is dispatched according to its particular semantics.

The first identifier, if provided, is a label specifying which instrument instances are to receive the event. If
this label is provided, when the control event is dispatched, any active instrument instances which were
created by instr events with the same label receive the control event. If the label is provided, and there are
no such active instrument instances, the control event shall be ignored. If the label is not provided, then the
control event references a global variable of the orchestra.

The second identifier (the first required identifier) is the name of a variable which will receive the event.
For labelled control lines, the name references a variable in instruments which were created based upon
instr events with the same label. If there is no such name in a particular instrument instance, then the
control event shall be ignored for that instance. For unlabelled lines, the name references a global variable
of the orchestra with the same name. If there is no such global variable, then the control event shall be
ignored.

The second number is the new value for the control variable. When the control event is dispatched,
variables in the orchestra as identified in the preceding paragraph shall have their values set to this value.

SASL syntax and semantics Tempo line flange

125 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.7.5 Tempo line

The tempo line in the score specifies the new tempo for the decoding process. The tempo is specified in
beats-per-minute; the default tempo shall be sixty beats per minute, and thus by default the score time is
measured in seconds.

The first number in the tempo line is the score time at which the tempo changes. When this time arrives, the
tempo event shall be dispatched as described in Subclause 5.3.3.3, list item 7.

The second number is the new tempo, specified in beats per minute. Consequently, one beat lasts 60/tempo
seconds, so that a tempo of 120 beats per minute is twice as fast as the default. When a tempo line is
decoded, the time numbers in the score continue progressively, with the increments now in accordance with
the new time unit.

5.7.6 Table line

The table line in the score specifies the creation or destruction of a wavetable.

The first number in the score line is the score time at which the wavetable is created or destroyed. For
creation events, the wavetable shall be created at this time. For destruction events, the wavetable shall not
be destroyed before this time.

The first identifier is the name of the wavetable. This name references a wavetable in the global orchestra
scope.

The second identifier is either the name of the table generator, or the special name destroy. It is a syntax
error if this identifier is not the name of one of the core wavetable generators listed in Subclause 5.6, or the
special name destroy.

The pfield list is the list of parameters to the particular core wavetable generator. Not every sequence of
parameters is legal for every table generator; see the definitions in Subclause 5.6.

The sample core wavetable generator refers to a sound sample (see Subclause 5.6.2). Implementations
providing textual interfaces are suggested to provide access to commonly-used “soundfile” formats in the
first pfield as a string constant. However, this is non-normative; the only normative aspect is as follows. In
a bitstream table score line object, the refers_to_sample bit may be set. If this is the case, then the sample
token of that score line object shall refer to another bitstream object containing the sample data, and it is
this sample data which shall be placed in the wavetable.

When the dispatch time of the table event is received, if the table line references the destroy name, then any
global wavetable with that name may be destroyed and its memory freed. If the table line specifies creation
of a wavetable, and there is already a global wavetable with the same name, the new wavetable replaces the
existing wavetable. That is, the global wavetable with that name may be destroyed and its memory freed.

When a new table is to be created, memory space is allocated for the table and filled with data according to
the particular wavetable generator. Any reference to a wavetable with this name (including indirect
references through import into a instrument instance) in existing or new instrument instances shall be taken
as direction to the new wavetable.

NOTE

According to this paragraph, the wavetables referenced by running instrument instances shall be replaced
upon dispatch of a table score line using the same name. That is, in the midst of the sound generation

SASL syntax and semantics End line flange

126 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

process, when the table score line is dispatched, any table-reference opcodes in an instrument referencing
that name shift reference to the new wavetable.

5.7.7 End line

The end line in the score specifies the end of the sound-generation process. The number given is the end
time, in score time, for the orchestra. When this time is reached, the orchestra ceases, and all future
Composition Buffers based on this Structured Audio decoding process contain only 0 values.

SAOL/SASL tokenisation Introduction flange

127 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.8 SAOL/SASL tokenisation

5.8.1 Introduction

This Subclause describes the normative process of mapping between the SAOL textual format used to
describe syntax and semantics in Subclause 5.4, and the tokenised bitstream representation used in the
bitstream definition in Subclause 5.1. The textual representation stands outside of the bitstream-decoder
relationship, and as such is not required to be implemented or used. The only aspect of SAOL decoding
which is strictly normative is the process of turning a tokenised bitstream representation into sound as
described in Subclause 5.3. However, it is highly recommended that implementations which allow access to
bitstream contents use the textual representation described in Subclause 5.4 rather than the tokenised
representation. It is nearly impossible for a human reader to understand a SAOL program presented in
tokenised format.

Annex D describes the analogous detokenisation process, for informative purposes only.

5.8.2 SAOL tokenisation

To tokenise a textual SAOL orchestra, the following steps shall be performed. First, the orchestra shall be
divided into lexical elements, where a lexical element is one of the following:

1. A punctuation mark,

2. A reserved word (see Subclause 5.4.9),

3. A standard name (see Subclause 5.4.6.8),

4. A core opcode name (see Subclause 5.5.3),

5. A core wavetable generator name (see Subclause 5.6),

6. A symbolic constant (a string, integer, or floating-point constant; see Subclause 5.4.2.3), or

7. An identifier (see Subclause 5.4.2.2).

Whitespace (see Subclause 5.4.2.6) may be used to separate lexical elements as desired; in some cases, it is
required in order to lexically disambiguate the orchestra. In neither case shall whitespace be treated as a
lexical element of the orchestra. Comments (see Subclause 5.4.2.5) may be used in the textual SAOL
orchestra but are removed upon lexical analysis; comments are not preserved through a
tokenisation/detokenisation sequence.

After lexical analysis, all identifiers in the orchestra shall be numbered with symbol values, so that a single
symbol is associated with a particular textual identifier. All identifiers which are textually equivalent (equal
under string comparison) shall be associated with the same symbol regardless of their syntactic scope. This
association of symbols to identifiers is called the symbol table.

Using the lexical analysis and the symbol table, a tokenised representation of the orchestra may be
produced. The lexical analysis is scanned in the order it was presented in the textual representation, and for
each lexical element:

- If the element is of type (1) – (5) from above, the token value associated in the table in Annex
A with that element shall be produced.

SAOL/SASL tokenisation SASL Tokenisation flange

128 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

- If the element is of type (6) from above, one of the special tokens 0xF1, 0xF2, or 0xF3 shall
be produced, depending on the type of the symbolic constant, and the succeeding bitstream
element shall be the bitstream representation of the value.

- If the element is of type 7, the special token 0xF0 shall be produced, and the succeeding
bitstream element shall be the symbol associated with the identifier in the symbol table.

After the sequence of lexical elements presented in the textual orchestra is tokenised, the special token
0xFF, representing end-of-orchestra, shall be produced.

5.8.3 SASL Tokenisation

A SASL score must be tokenised with respect to a particular SAOL orchestra, since the symbol values must
correspond in order for the semantics to be according to the author’s intent.

To tokenise a SASL file, the following steps are taken. First, the SASL file is divided into lexical elements,
where each element is either an identifier, a reserved word, the name of a core wavetable generator, or a
number. After lexical analysis, each identifier shall be associated with the appropriate symbol number from
the SAOL orchestra reference. That is, for the associated SAOL orchestra, if there is an identifier in the
orchestra equivalent to the identifier in the score, the identifier in the score shall receive the same symbol
number that it received in the orchestra. If there is no such identifier in the orchestra, any unused symbol
number may be assigned to the identifier in the score.

Using the lexical analysis and the symbol table, a tokenised representation of the orchestra may be
produced. Each score line is taken in turn, in the order presented in the textual representation, and used to
produce a score_line bitstream element, according to the semantics in Subclause 5.7 and the bitstream
syntax for the various score elements, as given in Subclause 5.1.2.

Sample Bank syntax and semantics Introduction RIFF Structure

129 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9 Sample Bank syntax and semantics

5.9.1 Introduction

This Subclause describes the operation of the Sample Bank synthesis method for both Profile 2 and Profile
4. In Profile 2, only Sample Bank and MIDI class types shall appear in the bitstream, and this Subclause
describes the normative process of generating sound from a Sample Bank bitstream data element and a
sequence of MIDI instructions. In Profile 4, Sample Banks are used in the context of a SAOL instrument as
described in Subclause 5.4.6.6.8, and this Subclause describes the normative process of generating sound
and placing it on three busses, depending on the Sample Bank bitstream data element and the particular call
to sbsynth.

5.9.2 Elements of bitstream

5.9.2.1 RIFF Structure

5.9.2.1.1 General RIFF File Structure
The RIFF (Resource Interchange File Format) is a tagged file structure developed for multimedia resource
files, and is described in some detail in the Microsoft Windows 3.1 SDK Multimedia Programmer’s
Reference. The Tagged-file structure is useful because it helps prevent compatibility problems which can
occur as the file definition changes over time. Because each piece of data in the file is identified by a
standard header, an application that does not recognise a given data element can skip over the unknown
information. The relevant information is provided in the bitstream description, Subclause 0.

A RIFF file is constructed from a basic building block called a “chunk.” In ‘C’ syntax, a chunk is defined:

typedef DWORD FOURCC; // Four-character code
typedef struct {
 FOURCC ckID; // Chunk ID identifies type of data in the chunk.
 DWORD ckSize; // Size of chunk data in bytes, excluding pad byte.
 BYTE ckDATA[ckSize]; // Actual data + a pad byte if req’d to word align.
};

Two types of chunks, the “RIFF” and “LIST” chunks, may contain nested chunks called subchunks as their
data.

Within a given level of the hierarchy, the ordering of the chunks is arbitrary. Any chunk with an unknown
chunk ID should be ignored.

5.9.2.1.2 The Sample Bank Chunks and Subchunks
A Structured Audio Sample Bank bitstream element comprises three chunks: an INFO-list chunk containing
a number of required and optional subchunks describing the bitstream element, its history, and its intended
use, an sdta-list chunk comprising a single subchunk containing any referenced digital audio samples, and a
pdta-list chunk containing nine subchunks which define the articulation of the digital audio data.

Sample Bank syntax and semantics Elements of bitstream The INFO-list Chunk

130 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.2.1.3 Redundancy and Error Handling in the RIFF structure
The RIFF bitstream element structure contains redundant information regarding the length of the bitstream
element and the length of the chunks and subchunks. This fact enables any reader of a SASBF bitstream
element to determine if the bitstream element has been damaged by loss of data.

If any such loss is detected, the SASBF bitstream element is termed “structurally unsound” and in general
should be rejected.

5.9.2.2 The INFO-list Chunk
The INFO-list chunk in a SASBF bitstream element contains three mandatory and a variety of optional
subchunks as defined below. The INFO-list chunk gives basic information about the SASBF bank
contained in the bitstream element.

5.9.2.2.1 The ifil Subchunk
The ifil subchunk is a mandatory subchunk identifying the SASBF specification version level to which the
bitstream element complies. It is always four bytes in length, and contains data according to the structure:

struct sfVersionTag
{

WORD wMajor;
WORD wMinor;

};

The WORD wMajor contains the value to the left of the decimal point in the SASBF specification version.
The WORD wMinor contains the value to the right of the decimal point. For example, version 2.11 would
be implied if wMajor=2 and wMinor=11.

These values can be used by applications which read SASBF bitstream elements to determine if the format
of the bitstream element is usable by the program. Within a fixed wMajor, the only changes to the format
will be the addition of Generator, Source and Transform enumerators, and additional info subchunks.
These are all defined as being ignored if unknown to the program.

If the ifil subchunk is missing, or its size is not four bytes, the bitstream element should be rejected as
structurally unsound.

5.9.2.2.2 The isng Subchunk
The isng subchunk is a mandatory subchunk identifying the wavetable sound engine for which the bitstream
element was optimised. It contains an ASCII string of 256 or fewer bytes including one or two terminators
of value zero, so as to make the total byte count even.

The ASCII should be treated as case-sensitive. In other words “engine” is not the same as “ENGINE.”

The isng string may be optionally used by chip drivers to vary their synthesis algorithms to emulate the
target sound engine.

If the isng subchunk is missing not terminated in a zero valued byte, or its contents are an unknown sound
engine, the field should be ignored.

Sample Bank syntax and semantics Elements of bitstream The INFO-list Chunk

131 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.2.2.3 The INAM Subchunk
The INAM subchunk is a mandatory subchunk providing the name of the SASBF bank. It contains an
ASCII string of 256 or fewer bytes including one or two terminators of value zero, so as to make the total
byte count even. A typical inam subchunk would be the fourteen bytes representing “General MIDI” as
twelve ASCII characters followed by two zero bytes.

The ASCII should be treated as case-sensitive. In other words “General MIDI” is not the same as
“GENERAL MIDI.”

If the inam subchunk is missing, or not terminated in a zero valued byte, the field should be ignored and the
user supplied with an appropriate error message if the name is queried. If the bitstream element is re-
written, a valid name should be placed in the INAM field.

5.9.2.2.4 The irom Subchunk
The irom subchunk is an optional subchunk identifying a particular wavetable sound data ROM to which
any ROM samples refer. It contains an ASCII string of 256 or fewer bytes including one or two terminators
of value zero, so as to make the total byte count even. A typical irom field would be the six bytes
representing “1MGM” as four ASCII characters followed by two zero bytes.

The ASCII should be treated as case-sensitive. In other words “1mgm” is not the same as “1MGM.”

The irom string is used by drivers to verify that the ROM data referenced by the bitstream element is
available to the sound engine.

If the irom subchunk is missing, not terminated in a zero valued byte, or its contents are an unknown ROM,
the field should be ignored and the bitstream element assumed to reference no ROM samples. If ROM
samples are accessed, any accesses to such instruments should be terminated and not sound. A bitstream
element should not be written which attempts to access ROM samples without both irom and iver present
and valid.

5.9.2.2.5 The iver Subchunk
The iver subchunk is an optional subchunk identifying the particular wavetable sound data ROM revision to
which any ROM samples refer. It is always four bytes in length, and contains data according to the
structure:

struct sfVersionTag
{

WORD wMajor;
WORD wMinor;

};

The WORD wMajor contains the value to the left of the decimal point in the ROM version. The WORD
wMinor contains the value to the right of the decimal point. For example, version 1.36 would be implied if
wMajor=1 and wMinor=36.

The iver subchunk is used by drivers to verify that the ROM data referenced by the bitstream element is
located in the exact locations specified by the sound headers.

If the iver subchunk is missing, not four bytes in length, or its contents indicate an unknown or incorrect
ROM, the field should be ignored and the bitstream element assumed to reference no ROM samples. If
ROM samples are accessed, any accesses to such instruments should be terminated and not sound. Note
that for ROM samples to function correctly, both iver and irom must be present and valid. A bitstream

Sample Bank syntax and semantics Elements of bitstream The INFO-list Chunk

132 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

element should not be written which attempts to access ROM samples without both irom and iver present
and valid.

5.9.2.2.6 The ICRD Subchunk
The ICRD subchunk is an optional subchunk identifying the creation date of the SASBF bank. It contains
an ASCII string of 256 or fewer bytes including one or two terminators of value zero, so as to make the total
byte count even. A typical ICRD field would be the twelve bytes representing “May 1, 1995” as eleven
ASCII characters followed by a zero byte.

Conventionally, the format of the string is “Month Day, Year” where Month is initially capitalised and is the
conventional full English spelling of the month, Day is the date in decimal followed by a comma, and Year
is the full decimal year. Thus the field should conventionally never be longer than 32 bytes.

The ICRD string is provided for library management purposes.

If the ICRD subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of
being faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be
copied. If the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be
done.

5.9.2.2.7 The IENG Subchunk
The IENG subchunk is an optional subchunk identifying the names of any sound designers or engineers
responsible for the SASBF bank. It contains an ASCII string of 256 or fewer bytes including one or two
terminators of value zero, so as to make the total byte count even. A typical IENG field would be the
twelve bytes representing “Tim Swartz” as ten ASCII characters followed by two zero bytes.

The IENG string is provided for library management purposes.

If the IENG subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of
being faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be
copied. If the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be
done.

5.9.2.2.8 The IPRD Subchunk
The IPRD subchunk is an optional subchunk identifying any specific product for which the SASBF bank is
intended. It contains an ASCII string of 256 or fewer bytes including one or two terminators of value zero,
so as to make the total byte count even. A typical IPRD field would be the twelve bytes representing
“MPEG SASBF” as ten ASCII characters followed by two zero bytes.

The ASCII should be treated as case-sensitive. In other words “mpeg sasbf” is not the same as “MPEG
SASBF.”

The IPRD string is provided for library management purposes.

If the IPRD subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of
being faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be
copied. If the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be
done.

Sample Bank syntax and semantics Elements of bitstream The sdta-list Chunk

133 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.2.2.9 The ICOP Subchunk
The ICOP subchunk is an optional subchunk containing any copyright assertion string associated with the
SASBF bank. It contains an ASCII string of 256 or fewer bytes including one or two terminators of value
zero, so as to make the total byte count even. A typical ICOP field would be the 38 bytes representing
“Copyright (c) 1998 Content Developer” as 36 ASCII characters followed by two zero bytes.

The ICOP string is provided for intellectual property protection and management purposes.

If the ICOP subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of
being faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be
copied. If the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be
done.

5.9.2.2.10 The ICMT Subchunk
The ICMT subchunk is an optional subchunk containing any comments associated with the SASBF bank.
It contains an ASCII string of 65,536 or fewer bytes including one or two terminators of value zero, so as to
make the total byte count even. A typical ICMT field would be the 40 bytes representing “This space
unintentionally left blank.” as 38 ASCII characters followed by two zero bytes.

The ICMT string is provided for including comments.

If the ICMT subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of
being faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be
copied. If the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be
done.

5.9.2.2.11 The ISFT Subchunk
The ISFT subchunk is an optional subchunk identifying the SASBF tools used to create and most recently
modify the SASBF bank. It contains an ASCII string of 256 or fewer bytes including one or two
terminators of value zero, so as to make the total byte count even. A typical ISFT field would be the
twenty-six bytes representing “Editor 2.00a:Editor 2.00a” as twenty-five ASCII characters followed by a
zero byte.

The ASCII should be treated as case-sensitive. In other words “Editor” is not the same as “EDITOR.”

Conventionally, the tool name and revision control number are included first for the creating tool and then
for the most recent modifying tool. The two strings are separated by a colon. The string should be
produced by the creating program with a null modifying tool field (e.g. “Editor 2.00a:), and each time a tool
modifies the bank, it should replace the modifying tool field with its own name and revision control number.

The ISFT string is provided primarily for error tracing purposes.

If the ISFT subchunk is missing, not terminated in a zero valued byte, or for some reason incapable of being
faithfully copied as an ASCII string, the field should be ignored and if re-written, should not be copied. If
the field’s contents are not seemingly meaningful but can faithfully reproduced, this should be done.

5.9.2.3 The sdta-list Chunk
The sdta-list chunk in a SASBF bitstream element contains a single optional smpl subchunk which contains
all the sound data associated with the SASBF bank. The smpl subchunk is of arbitrary length, and contains
an even number of bytes.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

134 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.2.3.1 Sample Data Format in the smpl Subchunk
The smpl subchunk, contains one or more samples of digital audio information in the form of linearly coded
sixteen bit, signed, little endian (least significant byte first) words. Each sample is followed by a minimum
of forty-six zero valued sample data points. These zero valued data points are necessary to guarantee that
any reasonable upward pitch shift using any reasonable interpolator can loop on zero data at the end of the
sound.

5.9.2.3.2 Sample Data Looping Rules
Within each sample, one or more loop point pairs may exist. The locations of these points are defined
within the pdta-list chunk, but the sample data points themselves must comply with certain practices in
order for the loop to be compatible across multiple platforms.

The loops are defined by “equivalent points” in the sample. This means that there are two sample data
points which are logically equivalent, and a loop occurs when these points are spliced atop one another. In
concept, the loop end point is never actually played during looping; instead the loop start point follows the
point just prior to the loop end point. Because of the bandlimited nature of digital audio sampling, an
artefact free loop will exhibit virtually identical data surrounding the equivalent points.

In actuality, because of the various interpolation algorithms used by wavetable synthesisers, the data
surrounding both the loop start and end points may affect the sound of the loop. Hence both the loop start
and end points must be surrounded by continuous audio data. For example, even if the sound is
programmed to continue to loop throughout the decay, sample data points must be provided beyond the
loop end point. This data will typically be identical to the data at the start of the loop. A minimum of eight
valid data points are required to be present before the loop start and after the loop end.

The eight data points (four on each side) surrounding the two equivalent loop points should also be forced
to be identical. By forcing the data to be identical, all interpolation algorithms are guaranteed to properly
reproduce an artefact-free loop.

5.9.2.4 The pdta-list Chunk

5.9.2.4.1 The PHDR Subchunk
The PHDR subchunk is a required subchunk listing all presets within the SASBF bitstream element. It
shall be a multiple of thirty-eight bytes in length, and shall contain a minimum of two records, one record
for each preset and one for a terminal record according to the structure:

struct sfPresetHeader
{

CHAR achPresetName[20];
WORD wPreset;
WORD wBank;
WORD wPresetBagNdx;
DWORD dwLibrary;
DWORD dwGenre;
DWORD dwMorphology;

};

The ASCII character field achPresetName shall contain the name of the preset expressed in ASCII, with
unused terminal characters filled with zero valued bytes. Preset names are case-sensitive. A unique name
shall always be assigned to each preset in the SASBF bank.

The WORD wPreset shall contain the MIDI Preset Number and the WORD wBank the MIDI Bank
Number which apply to this preset. Note that the presets are not ordered within the SASBF bank. Presets

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

135 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

shall have a unique set of wPreset and wBank numbers. The special case of a General MIDI percussion
bank is handled conventionally by a wBank value of 128. If the value in either field is not a valid MIDI
value of 0 through 127, or 128 for wBank, the preset cannot be played but shall be maintained in memory
for future renumbering.

The WORD wPresetBagNdx is an index to the preset’s zone list in the PBAG subchunk. Because the
preset zone list is in the same order as the preset header list, the preset bag indices shall be monotonically
increasing with increasing preset headers. The size of the PBAG subchunk in bytes shall be equal to four
times the terminal preset’s wPresetBagNdx plus four. If the preset bag indices are non-monotonic or if the
terminal preset’s wPresetBagNdx does not match the PBAG subchunk size, the SASBF chunk is
structurally defective and shall be rejected at load time. All presets except the terminal preset shall have at
least one zone.

The DWORDs dwLibrary, dwGenre and dwMorphology are reserved for future implementation in a preset
library management function and should be preserved as read, and created as zero.

The terminal sfPresetHeader record should never be accessed, and exists only to provide a terminal
wPresetBagNdx with which to determine the number of zones in the last preset. All other values shall be
conventionally zero, with the exception of achPresetName, which may be optionally be “EOP” indicating
end of presets.

If the PHDR subchunk is missing, contains fewer than two records, or its size is not a multiple of 38 bytes,
the SASBF bitstream element shall be rejected as structurally unsound.

5.9.2.4.2 The PBAG Subchunk
The PBAG subchunk is a required subchunk listing all preset zones within the SASBF bitstream element.
It shall be a multiple of four bytes in length, and shall contain one record for each preset zone plus one
record for a terminal zone according to the structure:

struct sfPresetBag
{

WORD wGenNdx;
WORD wModNdx;

};

The first zone in a given preset shall be located at that preset’s wPresetBagNdx. The number of zones in
the preset shall be determined by the difference between the next preset’s wPresetBagNdx and the current
wPresetBagNdx.

The WORD wGenNdx shall be an index to the preset’s zone list of generators in the PGEN subchunk, and
the wModNdx shall be an index to its list of modulators in the PMOD subchunk. Because both the
generator and modulator lists are in the same order as the preset header and zone lists, these indices will be
monotonically increasing with increasing preset zones. The size of the PMOD subchunk in bytes shall be
equal to ten times the terminal preset’s wModNdx plus ten and the size of the PGEN subchunk in bytes
shall be equal to four times the terminal preset’s wGenNdx plus four. If the generator or modulator indices
are non-monotonic or do not match the size of the respective PGEN or PMOD subchunks, the bitstream
element is structurally defective and shall be rejected at load time.

If a preset has more than one zone, the first zone may be a global zone. A global zone is determined by the
fact that the last generator in the list is not an Instrument generator. All generator lists must contain at least
one generator with one exception - if a global zone exists for which there are no generators but only
modulators. The modulator lists can contain zero or more modulators.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

136 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

If a zone other than the first zone lacks an Instrument generator as its last generator, that zone should be
ignored. A global zone with no modulators and no generators should also be ignored.

If the PBAG subchunk is missing, or its size is not a multiple of four bytes, the bitstream element should be
rejected as structurally unsound.

5.9.2.4.3 The PMOD Subchunk
The PMOD subchunk is a required subchunk listing all preset zone modulators within the SASBF bitstream
element. It is always a multiple of ten bytes in length, and contains zero or more modulators plus a terminal
record according to the structure:

struct sfModList
{

SFModulator sfModSrcOper;
SFGenerator sfModDestOper;
SHORT modAmount;
SFModulator sfModAmtSrcOper;
SFTransform sfModTransOper;

};

The preset zone’s wModNdx points to the first modulator for that preset zone, and the number of
modulators present for a preset zone is determined by the difference between the next higher preset zone’s
wModNdx and the current preset’s wModNdx. A difference of zero indicates there are no modulators in
this preset zone.

The sfModSrcOper is one of the SFModulator enumeration type values. Unknown or undefined values are
ignored. Modulators with sfModAmtSrcOper set to ‘link’ which have no other modulator linked to it are
ignored. This value indicates the source of data for the modulator. Note that this enumeration is two bytes in
length.

The sfModDestOper indicates the destination of the modulator. The destination is a value of one of the
SFGenerator enumeration type. Unknown or undefined values are ignored. Modulators with links which
point to modulators which would exceed the total number of modulators for a given zone are ignored.
Linked modulators that are part of circular links are ignored. Note that this enumeration is two bytes in
length.

The SHORT modAmount is a signed value indicating the degree to which the source modulates the
destination. A zero value indicates there is no fixed amount.

The sfModAmtSrcOper is one of the SFModulator enumeration type values. Unknown or undefined values
are ignored. Modulators with sfModAmtSrcOper set to ‘link’ are ignored. This enumerator indicates that
the specified modulation source controls the degree to which the source modulates the destination. Note that
this enumeration is two bytes in length.

The sfModTransOper is one of the SFTransform enumeration type values. Unknown or undefined values
are ignored. This value indicates that a transform of the specified type will be applied to the modulation
source before application to the modulator. Note that this enumeration is two bytes in length.

The terminal record conventionally contains zero in all fields, and is always ignored.

A modulator is defined by its sfModSrcOper, its sfModDestOper, and its sfModSrcAmtOper. All
modulators within a zone must have a unique set of these three enumerators. If a second modulator is
encountered with the same three enumerators as a previous modulator with the same zone, the first
modulator will be ignored.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

137 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Modulators in the PMOD subchunk act as additively relative modulators with respect to those in the IMOD
subchunk. In other words, a PMOD modulator can increase or decrease the amount of an IMOD modulator.

In SASBF, no modulators have yet been defined, and the PMOD subchunk will always consist of ten zero
valued bytes.

If the PMOD subchunk is missing, or its size is not a multiple of ten bytes, the bitstream element should be
rejected as structurally unsound.

5.9.2.4.4 The PGEN Subchunk
The PGEN chunk is a required chunk containing a list of preset zone generators for each preset zone within
the SASBF bitstream element. It is always a multiple of four bytes in length, and contains one or more
generators for each preset zone (except a global zone containing only modulators) plus a terminal record
according to the structure:

struct sfGenList
{

SFGenerator sfGenOper;
genAmountType genAmount;

};

where the types are defined:

typedef struct
{

BYTE byLo;
BYTE byHi;

} rangesType;

typedef union
{

rangesType ranges;
SHORT shAmount;
WORD wAmount;

} genAmountType;

The sfGenOper is a value of one of the SFGenerator enumeration type values. Unknown or undefined
values are ignored. This value indicates the type of generator being indicated. Note that this enumeration is
two bytes in length.

The genAmount is the value to be assigned to the specified generator. Note that this can be of three
formats. Certain generators specify a range of MIDI key numbers or MIDI velocities, with a minimum and
maximum value. Other generators specify an unsigned WORD value. Most generators, however, specify a
signed 16 bit SHORT value.

The preset zone’s wGenNdx points to the first generator for that preset zone. Unless the zone is a global
zone, the last generator in the list is an “Instrument” generator, whose value is a pointer to the instrument
associated with that zone. If a “key range” generator exists for the preset zone, it is always the first
generator in the list for that preset zone. If a “velocity range” generator exists for the preset zone, it will
only be preceded by a key range generator. If any generators follow an Instrument generator, they will be
ignored.

A generator is defined by its sfGenOper. All generators within a zone must have a unique sfGenOper
enumerator. If a second generator is encountered with the same sfGenOper enumerator as a previous
generator with the same zone, the first generator will be ignored.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

138 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Generators in the PGEN subchunk are applied relative to generators in the IGEN subchunk in an additive
manner. In other words, PGEN generators increase or decrease the value of an IGEN generator.

If the PGEN subchunk is missing, or its size is not a multiple of four bytes, the bitstream element should be
rejected as structurally unsound. If a key range generator is present and not the first generator, it should be
ignored. If a velocity range generator is present, and is preceded by a generator other than a key range
generator, it should be ignored. If a non-global list does not end in an instrument generator, the zone should
be ignored. If the instrument generator value is equal to or greater than the terminal instrument, the
bitstream element should be rejected as structurally unsound.

5.9.2.4.5 The INST Subchunk
The inst subchunk is a required subchunk listing all instruments within the SASBF bitstream element. It is
always a multiple of twenty-two bytes in length, and contains a minimum of two records, one record for
each instrument and one for a terminal record according to the structure:

struct sfInst
{

CHAR achInstName[20];
WORD wInstBagNdx;

};

The ASCII character field achInstName contains the name of the instrument expressed in ASCII, with
unused terminal characters filled with zero valued bytes. Instrument names are case-sensitive. A unique
name should always be assigned to each instrument in the SASBF bank to enable identification. However,
if a bank is read containing the erroneous state of instruments with identical names, the instruments should
not be discarded. They should either be preserved as read or, preferably, uniquely renamed.

The WORD wInstBagNdx is an index to the instrument’s zone list in the IBAG subchunk. Because the
instrument zone list is in the same order as the instrument list, the instrument bag indices will be
monotonically increasing with increasing instruments. The size of the IBAG subchunk in bytes will be four
greater than four times the terminal (EOI) instrument’s wInstBagNdx. If the instrument bag indices are
non-monotonic or if the terminal instrument’s wInstBagNdx does not match the IBAG subchunk size, the
bitstream element is structurally defective and should be rejected at load time. All instruments except the
terminal instrument must have at least one zone; any preset with no zones should be ignored.

The terminal sfInst record should never be accessed, and exists only to provide a terminal wInstBagNdx
with which to determine the number of zones in the last instrument. All other values are conventionally
zero, with the exception of achInstName, which should be “EOI” indicating end of instruments.

If the INST subchunk is missing, contains fewer than two records, or its size is not a multiple of 22 bytes,
the bitstream element should be rejected as structurally unsound. All instruments present in the inst
subchunk are typically referenced by a preset zone. However, a bitstream element containing any
“orphaned” instruments need not be rejected. SASBF applications can optionally ignore or filter out these
orphaned instruments based on user preference.

5.9.2.4.6 The IBAG Subchunk
The IBAG subchunk is a required subchunk listing all instrument zones within the SASBF bitstream
element. It is always a multiple of four bytes in length, and contains one record for each instrument zone
plus one record for a terminal zone according to the structure:

struct sfInstBag
{

WORD wInstGenNdx;
WORD wInstModNdx;

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

139 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

};

The first zone in a given instrument is located at that instrument’s wInstBagNdx. The number of zones in
the instrument is determined by the difference between the next instrument’s wInstBagNdx and the current
wInstBagNdx.

The WORD wInstGenNdx is an index to the instrument zone’s list of generators in the IGEN subchunk, and
the wInstModNdx is an index to its list of modulators in the IMOD subchunk. Because both the generator
and modulator lists are in the same order as the instrument and zone lists, these indices will be
monotonically increasing with increasing zones. The size of the IMOD subchunk in bytes will be equal to
ten times the terminal instrument’s wModNdx plus ten and the size of the IGEN subchunk in bytes will be
equal to four times the terminal instrument’s wGenNdx plus four. If the generator or modulator indices are
non-monotonic or do not match the size of the respective IGEN or IMOD subchunks, the bitstream element
is structurally defective and should be rejected at load time.

If an instrument has more than one zone, the first zone may be a global zone. A global zone is determined
by the fact that the last generator in the list is not a sampleID generator. All generator lists must contain at
least one generator with one exception - if a global zone exists for which there are no generators but only
modulators. The modulator lists can contain zero or more modulators.

If a zone other than the first zone lacks a sampleID generator as its last generator, that zone should be
ignored. A global zone with no modulators and no generators should also be ignored.

If the IBAG subchunk is missing, or its size is not a multiple of four bytes, the bitstream element should be
rejected as structurally unsound.

5.9.2.4.7 The IMOD Subchunk
The IMOD subchunk is a required subchunk listing all instrument zone modulators within the SASBF
bitstream element. It is always a multiple of ten bytes in length, and contains zero or more modulators plus
a terminal record according to the structure:

struct sfModList
{

SFModulator sfModSrcOper;
SFGenerator sfModDestOper;
SHORT modAmount;
SFModulator sfModAmtSrcOper;
SFTransform sfModTransOper;

};

The zone’s wInstModNdx points to the first modulator for that zone, and the number of modulators present
for a zone is determined by the difference between the next higher zone’s wInstModNdx and the current
zone’s wModNdx. A difference of zero indicates there are no modulators in this zone.

The sfModSrcOper is one of the SFModulator enumeration type values. Unknown or undefined values are
ignored. Modulators with sfModAmtSrcOper set to ‘link’ which have no other modulator linked to it are
ignored. This value indicates the source of data for the modulator. Note that this enumeration is two bytes in
length.

The sfModDestOper indicates the destination of the modulator. The destination is a value of one of the
SFGenerator enumeration type values. Unknown or undefined values are ignored. Modulators with links
which point to modulators which would exceed the total number of modulators for a given zone are ignored.
Linked modulators that are part of circular links are ignored. Note that this enumeration is two bytes in
length.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

140 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

The SHORT modAmount is a signed value indicating the degree to which the source modulates the
destination. A zero value indicates there is no fixed amount.

The sfModAmtSrcOper is one of the SFModulator enumeration type values. Unknown or undefined values
are ignored. This enumerator indicates that the specified modulation source controls the degree to which the
source modulates the destination. Note that this enumeration is two bytes in length.

The sfModTransOper is one of the SFTransform enumeration type values. Unknown or undefined values
are ignored. This value indicates that a transform of the specified type will be applied to the modulation
source before application to the modulator. Note that this enumeration is two bytes in length.

The terminal record conventionally contains zero in all fields, and is always ignored.

A modulator is defined by its sfModSrcOper, its sfModDestOper, and its sfModSrcAmtOper. All
modulators within a zone must have a unique set of these three enumerators. If a second modulator is
encountered with the same three enumerators as a previous modulator within the same zone, the first
modulator will be ignored.

Modulators in the IMOD subchunk are absolute. This means that an IMOD modulator replaces, rather than
adds to, a default modulator.

In SASBF, no modulators have yet been defined, and the IMOD subchunk will always consist of ten zero
valued bytes.

If the IMOD subchunk is missing, or its size is not a multiple of ten bytes, the bitstream element should be
rejected as structurally unsound.

5.9.2.4.8 The IGEN Subchunk
The IGEN chunk is a required chunk containing a list of zone generators for each instrument zone within
the SASBF bitstream element. It is always a multiple of four bytes in length, and contains one or more
generators for each zone (except a global zone containing only modulators) plus a terminal record
according to the structure:

struct sfInstGenList
{

SFGenerator sfGenOper;
genAmountType genAmount;

};

where the types are defined as in the PGEN zone above.

The genAmount is the value to be assigned to the specified generator. Note that this can be of three
formats. Certain generators specify a range of MIDI key numbers of MIDI velocities, with a minimum and
maximum value. Other generators specify an unsigned WORD value. Most generators, however, specify a
signed 16 bit SHORT value.

The zone’s wInstGenNdx points to the first generator for that zone. Unless the zone is a global zone, the
last generator in the list is a “sampleID” generator, whose value is a pointer to the sample associated with
that zone. If a “key range” generator exists for the zone, it is always the first generator in the list for that
zone. If a “velocity range” generator exists for the zone, it will only be preceded by a key range generator.
If any generators follow a sampleID generator, they will be ignored.

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

141 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

A generator is defined by its sfGenOper. All generators within a zone must have a unique sfGenOper
enumerator. If a second generator is encountered with the same sfGenOper enumerator as a previous
generator within the same zone, the first generator will be ignored.

Generators in the IGEN subchunk are absolute in nature. This means that an IGEN generator replaces,
rather than adds to, the default value for the generator.

If the IGEN subchunk is missing, or its size is not a multiple of four bytes, the bitstream element should be
rejected as structurally unsound. If a key range generator is present and not the first generator, it should be
ignored. If a velocity range generator is present, and is preceded by a generator other than a key range
generator, it should be ignored. If a non-global list does not end in a sampleID generator, the zone should
be ignored. If the sampleID generator value is equal to or greater than the terminal sampleID, the bitstream
element should be rejected as structurally unsound.

5.9.2.4.9 The SHDR Subchunk
The SHDR chunk is a required subchunk listing all samples within the smpl subchunk and any referenced
ROM samples. It is always a multiple of forty-six bytes in length, and contains one record for each sample
plus a terminal record according to the structure:

struct sfSample
{

CHAR achSampleName[20];
DWORD dwStart;
DWORD dwEnd;
DWORD dwStartloop;
DWORD dwEndloop;
DWORD dwSampleRate;
BYTE byOriginalPitch;
CHAR chPitchCorrection;
WORD wSampleLink;
SFSampleLink sfSampleType;

};

The ASCII character field achSampleName contains the name of the sample expressed in ASCII, with
unused terminal characters filled with zero valued bytes. Sample names are case-sensitive. A unique name
should always be assigned to each sample in the SASBF bank to enable identification. However, if a bank
is read containing the erroneous state of samples with identical names, the samples should not be discarded.
They should either be preserved as read or, preferably, uniquely renamed.

The DWORD dwStart contains the index, in sample data points, from the beginning of the sample data field
to the first data point of this sample.

The DWORD dwEnd contains the index, in sample data points, from the beginning of the sample data field
to the first of the set of 46 zero valued data points following this sample.

The DWORD dwStartloop contains the index, in sample data points, from the beginning of the sample data
field to the first data point in the loop of this sample.

The DWORD dwEndloop contains the index, in sample data points, from the beginning of the sample data
field to the first data point following the loop of this sample. Note that this is the data point “equivalent to”
the first loop data point, and that to produce portable artefact free loops, the eight proximal data points
surrounding both the Startloop and Endloop points should be identical.

The values of dwStart, dwEnd, dwStartloop, and dwEndloop must all be within the range of the sample data
field included in the SASBF bank or referenced in the sound ROM. Also, to allow a variety of hardware
platforms to be able to reproduce the data, the samples have a minimum length of 48 data points, a

Sample Bank syntax and semantics Elements of bitstream The pdta-list Chunk

142 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

minimum loop size of 32 data points and a minimum of 8 valid points prior to dwStartloop and after
dwEndloop. Thus dwStart must be less than dwStartloop-7, dwStartloop must be less than dwEndloop-31,
and dwEndloop must be less than dwEnd-7. If these constraints are not met, the sound may optionally not
be played if the hardware cannot support artefact-free playback for the parameters given.

The DWORD dwSampleRate contains the sample rate, in hertz, at which this sample was acquired or to
which it was most recently converted. Values of greater than 50000 or less than 400 may not be
reproducible by some hardware platforms and should be avoided. A value of zero is illegal. If an illegal or
impractical value is encountered, the nearest practical value should be used.

The BYTE byOriginalPitch contains the MIDI key number of the recorded pitch of the sample. For
example, a recording of an instrument playing middle C (261.62 Hz) should receive a value of 60. This
value is used as the default “root key” for the sample, so that in the example, a MIDI key-on command for
note number 60 would reproduce the sound at its original pitch. For unpitched sounds, a conventional value
of 255 should be used. Values between 128 and 254 are illegal. Whenever an illegal value or a value of
255 is encountered, the value 60 should be used.

The CHAR chPitchCorrection contains a pitch correction in cents which should be applied to the sample on
playback. The purpose of this field is to compensate for any pitch errors during the sample recording
process. The correction value is that of the correction to be applied. For example, if the sound is 4 cents
sharp, a correction bringing it 4 cents flat is required; thus the value should be -4.

The value in sfSampleType is an enumeration with eight defined values: monoSample = 1, rightSample = 2,
leftSample = 4, linkedSample = 8, RomMonoSample = 32769, RomRightSample = 32770, RomLeftSample
= 32772, and RomLinkedSample = 32776. It can be seen that this is encoded such that bit 15 of the 16 bit
value is set if the sample is in ROM, and reset if it is included in the SASBF bank. The four LS bits of the
word are then exclusively set indicating mono, left, right, or linked.

If the sound is flagged as a ROM sample and no valid “irom” subchunk is included; the bitstream element is
structurally defective and should be rejected at load time.

If sfSampleType indicates a mono sample, then wSampleLink is undefined and its value should be
conventionally zero, but will be ignored regardless of value. If sfSampleType indicates a left or right
sample, then wSampleLink is the sample header index of the associated right or left stereo sample
respectively. Both samples should be played entirely synchronously, with their pitch controlled by the right
sample’s generators. All non-pitch generators should apply as normal; in particular the panning of the
individual samples to left and right should be accomplished via the pan generator. Left-right pairs should
always be found within the same instrument. Note also that no instrument should be designed in which it is
possible to activate more than one instance of a particular stereo pair. The linked sample type is not
currently fully defined in the SASBF specification, but will ultimately support a circularly linked list of
samples using wSampleLink. Note that this enumeration is two bytes in length.

The terminal sample record is never referenced, and is conventionally entirely zero with the exception of
achSampleName, which should be “EOS” indicating end of samples. All samples present in the smpl
subchunk are typically referenced by an instrument, however a bitstream element containing any
“orphaned” samples need not be rejected. SASBF applications can optionally ignore or filter out these
orphaned samples according to user preference.

If the SHDR subchunk is missing, or its is size is not a multiple of 46 bytes the bitstream element should be
rejected as structurally unsound.

Sample Bank syntax and semantics Enumerators Generator Enumerators

143 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.3 Enumerators

5.9.3.1 Generator Enumerators
Subclause 7.1 defines the generator and generator kinds. Subclause 8.4 defines the generator operation
model.

5.9.3.1.1 Kinds of Generator Enumerators
Five kinds of Generator Enumerators exist: Index Generators, Range Generators, Substitution Generators,
Sample Generators, and Value Generators.

An Index Generator’s amount is an index into another data structure. The only two Index Generators are
Instrument and sampleID.

A Range Generator defines a range of note-on parameters outside of which the zone is undefined. Two
Range Generators are currently defined, keyRange and velRange.

Substitution Generators are generators which substitute a value for a note-on parameter. Two Substitution
Generators are currently defined, overridingKeyNumber and overridingVelocity.

Sample Generators are generators which directly affect a sample’s properties. These generators are
undefined at the preset level. The currently defined Sample Generators are the eight address offset
generators, the sampleModes generator, the Overriding Root Key generator and the Exclusive Class
generator.

Value Generators are generators whose value directly affects a signal processing parameter. Most
generators are value generators.

5.9.3.1.2 Generator Enumerators Defined
The following is an exhaustive list of SASBF generators and their strict definitions:

0 startAddrsOffset The offset, in sample data points, beyond the Start sample header
parameter to the first sample data point to be played for this
instrument. For example, if Start were 7 and startAddrsOffset were
2, the first sample data point played would be sample data point 9.

1 endAddrsOffset The offset, in sample data points, beyond the End sample header
parameter to the last sample data point to be played for this
instrument. For example, if End were 17 and endAddrsOffset were -
2, the last sample data point played would be sample data point 15.

2 startloopAddrsOffset The offset, in sample data points, beyond the Startloop sample
header parameter to the first sample data point to be repeated in the
loop for this instrument. For example, if Startloop were 10 and
startloopAddrsOffset were -1, the first repeated loop sample data
point would be sample data point 9.

3 endloopAddrsOffset The offset, in sample data points, beyond the Endloop sample
header parameter to the sample data point considered equivalent to
the Startloop sample data point for the loop for this instrument. For
example, if Endloop were 15 and endloopAddrsOffset were 2,
sample data point 17 would be considered equivalent to the

Sample Bank syntax and semantics Enumerators Generator Enumerators

144 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Startloop sample data point, and hence sample data point 16 would
effectively precede Startloop during looping.

4 startAddrsCoarseOffset The offset, in 32768 sample data point increments beyond the Start
sample header parameter and the first sample data point to be played
in this instrument. This parameter is added to the startAddrsOffset
parameter. For example, if Start were 5, startAddrsOffset were 3
and startAddrsCoarseOffset were 2, the first sample data point
played would be sample data point 65544.

5 modLfoToPitch This is the degree, in cents, to which a full scale excursion of the
Modulation LFO will influence pitch. A positive value indicates a
positive LFO excursion increases pitch; a negative value indicates a
positive excursion decreases pitch. Pitch is always modified
logarithmically, that is the deviation is in cents, semitones, and
octaves rather than in Hz. For example, a value of 100 indicates that
the pitch will first rise 1 semitone, then fall one semitone.

6 vibLfoToPitch This is the degree, in cents, to which a full scale excursion of the
Vibrato LFO will influence pitch. A positive value indicates a
positive LFO excursion increases pitch; a negative value indicates a
positive excursion decreases pitch. Pitch is always modified
logarithmically, that is the deviation is in cents, semitones, and
octaves rather than in Hz. For example, a value of 100 indicates that
the pitch will first rise 1 semitone, then fall one semitone.

7 modEnvToPitch This is the degree, in cents, to which a full scale excursion of the
Modulation Envelope will influence pitch. A positive value
indicates an increase in pitch; a negative value indicates a decrease
in pitch. Pitch is always modified logarithmically, that is the
deviation is in cents, semitones, and octaves rather than in Hz. For
example, a value of 100 indicates that the pitch will rise 1 semitone
at the envelope peak.

8 initialFilterFc This is the cutoff and resonant frequency of the lowpass filter in
absolute cent units. The lowpass filter is defined as a second order
resonant pole pair whose pole frequency in Hz is defined by the
Initial Filter Cutoff parameter. When the cutoff frequency exceeds
20kHz and the Q (resonance) of the filter is zero, the filter does not
affect the signal.

9 initialFilterQ This is the height above DC gain in centibels which the filter
resonance exhibits at the cutoff frequency. A value of zero or less
indicates the filter is not resonant; the gain at the cutoff frequency
(pole angle) may be less than zero when zero is specified. The filter
gain at DC is also affected by this parameter such that the gain at
DC is reduced by half the specified gain. For example, for a value
of 100, the filter gain at DC would be 5 dB below unity gain, and
the height of the resonant peak would be 10 dB above the DC gain,
or 5 dB above unity gain. Note also that if initialFilterQ is set to
zero or less and the cutoff frequency exceeds 20 kHz, then the filter
response is flat and unity gain.

Sample Bank syntax and semantics Enumerators Generator Enumerators

145 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

10 modLfoToFilterFc This is the degree, in cents, to which a full scale excursion of the
Modulation LFO will influence filter cutoff frequency. A positive
number indicates a positive LFO excursion increases cutoff
frequency; a negative number indicates a positive excursion
decreases cutoff frequency. Filter cutoff frequency is always
modified logarithmically, that is the deviation is in cents, semitones,
and octaves rather than in Hz. For example, a value of 1200
indicates that the cutoff frequency will first rise 1 octave, then fall
one octave.

11 modEnvToFilterFc This is the degree, in cents, to which a full scale excursion of the
Modulation Envelope will influence filter cutoff frequency. A
positive number indicates an increase in cutoff frequency; a negative
number indicates a decrease in filter cutoff frequency. Filter cutoff
frequency is always modified logarithmically, that is the deviation is
in cents, semitones, and octaves rather than in Hz. For example, a
value of 1000 indicates that the cutoff frequency will rise one octave
at the envelope attack peak.

12 endAddrsCoarseOffset The offset, in 32768 sample data point increments beyond the End
sample header parameter and the last sample data point to be played
in this instrument. This parameter is added to the endAddrsOffset
parameter. For example, if End were 65536, startAddrsOffset were
-3 and startAddrsCoarseOffset were -1, the last sample data point
played would be sample data point 32765.

13 modLfoToVolume This is the degree, in centibels, to which a full scale excursion of the
Modulation LFO will influence volume. A positive number
indicates a positive LFO excursion increases volume; a negative
number indicates a positive excursion decreases volume. Volume is
always modified logarithmically, that is the deviation is in decibels
rather than in linear amplitude. For example, a value of 100
indicates that the volume will first rise ten dB, then fall ten dB.

14 unused1 Unused, reserved. Should be ignored if encountered.

15 chorusEffectsSend This is the degree, in 0.1% units, to which the audio output of the
note is sent to the chorus effects processor. A value of 0% or less
indicates no signal is sent from this note; a value of 100% or more
indicates the note is sent at full level. Note that this parameter has
no effect on the amount of this signal sent to the “dry” or
unprocessed portion of the output. For example, a value of 250
indicates that the signal is sent at 25% of full level (attenuation of 12
dB from full level) to the chorus effects processor.

16 reverbEffectsSend This is the degree, in 0.1% units, to which the audio output of the
note is sent to the reverb effects processor. A value of 0% or less
indicates no signal is sent from this note; a value of 100% or more
indicates the note is sent at full level. Note that this parameter has
no effect on the amount of this signal sent to the “dry” or
unprocessed portion of the output. For example, a value of 250
indicates that the signal is sent at 25% of full level (attenuation of 12
dB from full level) to the reverb effects processor.

Sample Bank syntax and semantics Enumerators Generator Enumerators

146 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

17 pan This is the degree, in 0.1% units, to which the “dry” audio output of
the note is positioned to the left or right output. A value of -50% or
less indicates the signal is sent entirely to the left output and not sent
to the right output; a value of +50% or more indicates the signal is
sent entirely to the right and not sent to the left. A value of zero
sends the signal equally to left and right. For example, a value of -
250 indicates that the signal is sent at 75% of full level to the left
output and 25% of full level to the right output.

18 unused2 Unused, reserved. Should be ignored if encountered.

19 unused3 Unused, reserved. Should be ignored if encountered.

20 unused4 Unused, reserved. Should be ignored if encountered.

21 delayModLFO This is the delay time, in absolute timecents, from key on until the
Modulation LFO begins its upward ramp from zero value. A value
of 0 indicates a 1 second delay. A negative value indicates a delay
less than one second and a positive value a delay longer than one
second. The most negative number (-32768) conventionally
indicates no delay. For example, a delay of 10 msec would be
1200log2(.01) = -7973.

22 freqModLFO This is the frequency, in absolute cents, of the Modulation LFO’s
triangular period. A value of zero indicates a frequency of 8.176
Hz. A negative value indicates a frequency less than 8.176 Hz; a
positive value a frequency greater than 8.176 Hz. For example, a
frequency of 10 MHz would be 1200log2(.01/8.176) = -11610.

23 delayVibLFO This is the delay time, in absolute timecents, from key on until the
Vibrato LFO begins its upward ramp from zero value. A value of 0
indicates a 1 second delay. A negative value indicates a delay less
than one second; a positive value a delay longer than one second.
The most negative number (-32768) conventionally indicates no
delay. For example, a delay of 10 msec would be 1200log2(.01) = -
7973.

24 freqVibLFO This is the frequency, in absolute cents, of the Vibrato LFO’s
triangular period. A value of zero indicates a frequency of 8.176
Hz. A negative value indicates a frequency less than 8.176 Hz; a
positive value a frequency greater than 8.176 Hz. For example, a
frequency of 10 mHz would be 1200log2(.01/8.176) = -11610.

25 delayModEnv This is the delay time, in absolute timecents, between key on and the
start of the attack phase of the Modulation envelope. A value of 0
indicates a 1 second delay. A negative value indicates a delay less
than one second; a positive value a delay longer than one second.
The most negative number (-32768) conventionally indicates no
delay. For example, a delay of 10 msec would be 1200log2(.01) = -
7973.

26 attackModEnv This is the time, in absolute timecents, from the end of the
Modulation Envelope Delay Time until the point at which the
Modulation Envelope value reaches its peak. Note that the attack is

Sample Bank syntax and semantics Enumerators Generator Enumerators

147 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

“convex”; the curve is nominally such that when applied to a decibel
or semitone parameter, the result is linear in amplitude or Hz
respectively. A value of 0 indicates a 1 second attack time. A
negative value indicates a time less than one second; a positive value
a time longer than one second. The most negative number (-32768)
conventionally indicates instantaneous attack. For example, an
attack time of 10 msec would be 1200log2(.01) = -7973.

27 holdModEnv This is the time, in absolute timecents, from the end of the attack
phase to the entry into decay phase, during which the envelope value
is held at its peak. A value of 0 indicates a 1 second hold time. A
negative value indicates a time less than one second; a positive value
a time longer than one second. The most negative number (-32768)
conventionally indicates no hold phase. For example, a hold time of
10 msec would be 1200log2(.01) = -7973.

28 decayModEnv This is the time, in absolute timecents, for a 100% change in the
Modulation Envelope value during decay phase. For the
Modulation Envelope, the decay phase linearly ramps toward the
sustain level. If the sustain level were zero, the Modulation
Envelope Decay Time would be the time spent in decay phase. A
value of 0 indicates a 1 second decay time for a zero sustain level.
A negative value indicates a time less than one second; a positive
value a time longer than one second. For example, a decay time of
10 msec would be 1200log2(.01) = -7973.

29 sustainModEnv This is the decrease in level, expressed in 0.1% units, to which the
Modulation Envelope value ramps during the decay phase. For the
Modulation Envelope, the sustain level is properly expressed in
percent of full scale. Because the volume envelope sustain level is
expressed as an attenuation from full scale, the sustain level is
analogously expressed as a decrease from full scale. A value of 0
indicates the sustain level is full level; this implies a zero duration of
decay phase regardless of decay time. A positive value indicates a
decay to the corresponding level. Values less than zero are to be
interpreted as zero; values above 1000 are to be interpreted as 1000.
For example, a sustain level which corresponds to an absolute value
40% of peak would be 600.

30 releaseModEnv This is the time, in absolute timecents, for a 100% change in the
Modulation Envelope value during release phase. For the
Modulation Envelope, the release phase linearly ramps toward zero
from the current level. If the current level were full scale, the
Modulation Envelope Release Time would be the time spent in
release phase until zero value were reached. A value of 0 indicates
a 1 second decay time for a release from full level. A negative value
indicates a time less than one second; a positive value a time longer
than one second. For example, a release time of 10 msec would be
1200log2(.01) = -7973.

31 keynumToModEnvHold This is the degree, in timecents per KeyNumber units, to which the
hold time of the Modulation Envelope is decreased by increasing
MIDI key number. The hold time at key number 60 is always
unchanged. The unit scaling is such that a value of 100 provides a
hold time which tracks the keyboard; that is, an upward octave

Sample Bank syntax and semantics Enumerators Generator Enumerators

148 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

causes the hold time to halve. For example, if the Modulation
Envelope Hold Time were -7973 = 10 msec and the Key Number to
Mod Env Hold were 50 when key number 36 was played, the hold
time would be 20 msec.

32 keynumToModEnvDecay This is the degree, in timecents per KeyNumber units, to which the
decay time of the Modulation Envelope is decreased by increasing
MIDI key number. The hold time at key number 60 is always
unchanged. The unit scaling is such that a value of 100 provides a
hold time which tracks the keyboard; that is, an upward octave
causes the hold time to halve. For example, if the Modulation
Envelope Hold Time were -7973 = 10 msec and the Key Number to
Mod Env Hold were 50 when key number 36 was played, the hold
time would be 20 msec.

33 delayVolEnv This is the delay time, in absolute timecents, between key on and the
start of the attack phase of the Volume envelope. A value of 0
indicates a 1 second delay. A negative value indicates a delay less
than one second; a positive value a delay longer than one second.
The most negative number (-32768) conventionally indicates no
delay. For example, a delay of 10 msec would be 1200log2(.01) = -
7973.

34 attackVolEnv This is the time, in absolute timecents, from the end of the Volume
Envelope Delay Time until the point at which the Volume Envelope
value reaches its peak. Note that the attack is “convex”; the curve is
nominally such that when applied to the decibel volume parameter,
the result is linear in amplitude. A value of 0 indicates a 1 second
attack time. A negative value indicates a time less than one second;
a positive value a time longer than one second. The most negative
number (-32768) conventionally indicates instantaneous attack. For
example, an attack time of 10 msec would be 1200log2(.01) = -
7973.

35 holdVolEnv This is the time, in absolute timecents, from the end of the attack
phase to the entry into decay phase, during which the Volume
envelope value is held at its peak. A value of 0 indicates a 1 second
hold time. A negative value indicates a time less than one second; a
positive value a time longer than one second. The most negative
number (-32768) conventionally indicates no hold phase. For
example, a hold time of 10 msec would be 1200log2(.01) = -7973.

36 decayVolEnv This is the time, in absolute timecents, for a 100% change in the
Volume Envelope value during decay phase. For the Volume
Envelope, the decay phase linearly ramps toward the sustain level,
causing a constant dB change for each time unit. If the sustain level
were -96dB, the Volume Envelope Decay Time would be the time
spent in decay phase. A value of 0 indicates a 1 second decay time
for a zero sustain level. A negative value indicates a time less than
one second; a positive value a time longer than one second. For
example, a decay time of 10 msec would be 1200log2(.01) = -7973.

37 sustainVolEnv This is the decrease in level, expressed in centibels, to which the
Volume Envelope value ramps during the decay phase. For the

Sample Bank syntax and semantics Enumerators Generator Enumerators

149 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Volume Envelope, the sustain level is best expressed in centibels of
attenuation from full scale. A value of 0 indicates the sustain level
is full level; this implies a zero duration of decay phase regardless of
decay time. A positive value indicates a decay to the corresponding
level. Values less than zero are to be interpreted as zero;
conventionally 1000 indicates full attenuation. For example, a
sustain level which corresponds to an absolute value 12dB below of
peak would be 120.

38 releaseVolEnv This is the time, in absolute timecents, for a 100% change in the
Volume Envelope value during release phase. For the Volume
Envelope, the release phase linearly ramps toward zero from the
current level, causing a constant dB change for each time unit. If the
current level were full scale, the Volume Envelope Release Time
would be the time spent in release phase until 96dB attenuation were
reached. A value of 0 indicates a 1 second decay time for a release
from full level. A negative value indicates a time less than one
second; a positive value a time longer than one second. For
example, a release time of 10 msec would be 1200log2(.01) = -
7973.

39 keynumToVolEnvHold This is the degree, in timecents per KeyNumber units, to which the
hold time of the Volume Envelope is decreased by increasing MIDI
key number. The hold time at key number 60 is always unchanged.
The unit scaling is such that a value of 100 provides a hold time
which tracks the keyboard; that is, an upward octave causes the hold
time to halve. For example, if the Volume Envelope Hold Time
were -7973 = 10 msec and the Key Number to Vol Env Hold were
50 when key number 36 was played, the hold time would be 20
msec.

40 keynumToVolEnvDecay This is the degree, in timecents per KeyNumber units, to which the
decay time of the Volume Envelope is decreased by increasing
MIDI key number. The hold time at key number 60 is always
unchanged. The unit scaling is such that a value of 100 provides a
hold time which tracks the keyboard; that is, an upward octave
causes the hold time to halve. For example, if the Volume Envelope
Hold Time were -7973 = 10 msec and the Key Number to Vol Env
Hold were 50 when key number 36 was played, the hold time would
be 20 msec.

41 instrument This is the index into the INST subchunk providing the instrument
to be used for the current preset zone. A value of zero indicates the
first instrument in the list. The value should never exceed two less
than the size of the instrument list. The instrument enumerator is the
terminal generator for PGEN zones. As such, it should only appear
in the PGEN subchunk, and it must appear as the last generator
enumerator in all but the global preset zone.

42 reserved1 Unused, reserved. Should be ignored if encountered.

43 keyRange This is the minimum and maximum MIDI key number values for
which this preset zone or instrument zone is active. The LS byte
indicates the highest and the MS byte the lowest valid key. The

Sample Bank syntax and semantics Enumerators Generator Enumerators

150 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

keyRange enumerator is optional, but when it does appear, it must
be the first generator in the zone generator list.

44 velRange This is the minimum and maximum MIDI velocity values for which
this preset zone or instrument zone is active. The LS byte indicates
the highest and the MS byte the lowest valid velocity. The velRange
enumerator is optional, but when it does appear, it must be preceded
only by keyRange in the zone generator list.

45 startloopAddrsCoarseOffset The offset, in 32768 sample data point increments beyond the
Startloop sample header parameter and the first sample data point to
be repeated in this instrument’s loop. This parameter is added to the
startloopAddrsOffset parameter. For example, if Startloop were 5,
startloopAddrsOffset were 3 and startAddrsCoarseOffset were 2, the
first sample data point in the loop would be sample data point
65544.

46 keynum This enumerator forces the MIDI key number to effectively be
interpreted as the value given. This generator can only appear at the
instrument level. Valid values are from 0 to 127.

47 velocity This enumerator forces the MIDI velocity to effectively be
interpreted as the value given. This generator can only appear at the
instrument level. Valid values are from 0 to 127.

48 initialAttenuation This is the attenuation, in .4 centibel units, by which a note is
attenuated below full scale. A value of zero indicates no
attenuation; the note will be played at full scale. For example, a
value of 60 indicates the note will be played at 2.4 dB below full
scale for the note.

49 reserved2 Unused, reserved. Should be ignored if encountered.

50 endloopAddrsCoarseOffset The offset, in 32768 sample data point increments beyond the
Endloop sample header parameter to the sample data point
considered equivalent to the Startloop sample data point for the loop
for this instrument. This parameter is added to the
endloopAddrsOffset parameter. For example, if Endloop were 5,
endloopAddrsOffset were 3 and endAddrsCoarseOffset were 2,
sample data point 65544 would be considered equivalent to the
Startloop sample data point, and hence sample data point 65543
would effectively precede Startloop during looping.

51 coarseTune This is a pitch offset, in semitones, which should be applied to the
note. A positive value indicates the sound is reproduced at a higher
pitch; a negative value indicates a lower pitch. For example, a
Coarse Tune value of -4 would cause the sound to be reproduced
four semitones flat.

52 fineTune This is a pitch offset, in cents, which should be applied to the note.
It is additive with coarseTune. A positive value indicates the sound
is reproduced at a higher pitch; a negative value indicates a lower
pitch. For example, a Fine Tuning value of -5 would cause the
sound to be reproduced five cents flat.

Sample Bank syntax and semantics Enumerators Generator Enumerators

151 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

53 sampleID This is the index into the SHDR subchunk providing the sample to
be used for the current instrument zone. A value of zero indicates
the first sample in the list. The value should never exceed two less
than the size of the sample list. The sampleID enumerator is the
terminal generator for IGEN zones. As such, it should only appear
in the IGEN subchunk, and it must appear as the last generator
enumerator in all but the global zone.

54 sampleModes This enumerator indicates a value which gives a variety of Boolean
flags describing the sample for the current instrument zone. The
sampleModes should only appear in the IGEN subchunk, and should
not appear in the global zone. The two LS bits of the value indicate
the type of loop in the sample: 0 indicates a sound reproduced with
no loop, 1 indicates a sound which loops continuously, 2 is unused
but should be interpreted as indicating no loop, and 3 indicates a
sound which loops for the duration of key depression then proceeds
to play the remainder of the sample.

55 reserved3 Unused, reserved. Should be ignored if encountered.

56 scaleTuning This parameter represents the degree to which MIDI key number
influences pitch. A value of zero indicates that MIDI key number
has no effect on pitch; a value of 100 represents the usual tempered
semitone scale.

57 exclusiveClass This parameter provides the capability for a key depression in a
given instrument to terminate the playback of other instruments.
This is particularly useful for percussive instruments such as a hi-hat
cymbal. An exclusive class value of zero indicates no exclusive
class; no special action is taken. Any other value indicates that
when this note is initiated, any other sounding note with the same
exclusive class value should be rapidly terminated. The exclusive
class generator can only appear at the instrument level. The scope
of the exclusive class is the entire preset. In other words, any other
instrument zone within the same preset holding a corresponding
exclusive class will be terminated.

58 overridingRootKey This parameter represents the MIDI key number at which the sample
is to be played back at its original sample rate. If not present, or if
present with a value of -1, then the sample header parameter
Original Key is used in its place. If it is present in the range 0-127,
then the indicated key number will cause the sample to be played
back at its sample header Sample Rate. For example, if the sample
were a recording of a piano middle C (Original Key = 60) at a
sample rate of 22.050 kHz, and Root Key were set to 69, then
playing MIDI key number 69 (A above middle C) would cause a
piano note of pitch middle C to be heard.

59 unused5 Unused, reserved. Should be ignored if encountered.

60 endOper Unused, reserved. Should be ignored if encountered. Unique name
provides value to end of defined list.

Sample Bank syntax and semantics Enumerators Generator Enumerators

152 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.3.1.3 Generator Summary
The following tables give the ranges and default values for all SASBF defined generators.

Name Unit Abs
Zero

Min Min
Useful

Max Max
Useful

De-
fault

Def
Value

0 startAddrsOffset + smpls 0 0 None * * 0 None
1 endAddrsOffset + smpls 0 * * 0 None 0 None
2 startloopAddrsOffset + smpls 0 * * * * 0 None
3 endloopAddrsOffset + smpls 0 * * * * 0 None
4 startAddrsCoarseOffset + 32k 0 0 None * * 0 None
5 modLfoToPitch cent fs 0 -12000 -10 oct 1200 10 oct 0 None
6 vibLfoToPitch cent fs 0 -12000 -10 oct 1200 10 oct 0 None
7 modEnvToPitch cent fs 0 -12000 -10 oct 1200 10 oct 0 None
8 initialFilterFc cent 8.176

Hz
1500 20 Hz 1350

0
20
kHz

13500 Open

9 initialFilterQ cB 0 0 None 960 96 dB 0 None
10 modLfoToFilterFc cent fs 0 -12000 -10 oct 1200 10 oct 0 None
11 modEnvToFilterFc cent fs 0 -12000 -10 oct 1200 10 oct 0 None
12 endAddrsCoarseOffset + 32k 0 * * 0 None 0 None
13 modLfoToVolume cB fs 0 -960 -96 dB 960 96 dB 0 None
15 chorusEffectsSend 0.1% 0 0 None 1000 100% 0 None
16 reverbEffectsSend 0.1% 0 0 None 1000 100% 0 None
17 pan 0.1% Cntr -500 Left +500 Right 0 Centre
21 delayModLFO timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
22 freqModLFO cent 8.176

Hz
-16000 1 mHz 4500 100

Hz
0 8.176 Hz

23 delayVibLFO timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
24 freqVibLFO cent 8.176

Hz
-16000 1 mHz 4500 100

Hz
0 8.176 Hz

25 delayModEnv timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
26 attackModEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
27 holdModEnv timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
28 decayModEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
29 sustainModEnv -0.1% attk

peak
0 100% 1000 0% 0 attk pk

30 releaseModEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
31 keynumToModEnvHold tcent/key 0 -1200 -oct/ky 1200 oct/ky 0 None
32 keynumToModEnvDecay tcent/key 0 -1200 -oct/ky 1200 oct/ky 0 None
33 delayVolEnv timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
34 attackVolEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
35 holdVolEnv timecent 1 sec -12000 1 msec 5000 20 sec -12000 <1 msec
36 decayVolEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
37 sustainVolEnv cB attn attk

peak
0 0 dB 1440 144dB 0 attk pk

38 releaseVolEnv timecent 1 sec -12000 1 msec 8000 100sec -12000 <1 msec
39 keynumToVolEnvHold tcent/key 0 -1200 -oct/ky 1200 oct/ky 0 None
40 keynumToVolEnvDecay tcent/key 0 -1200 -oct/ky 1200 oct/ky 0 None
43 keyRange MIDI

ky#
key#
0

0 lo key 127 hi key 0-127 full kbd

44 velRange MIDI vel 0 0 min vel 127 max
vel

0-127 all vels

45 startloopAddrsCoarseOffset + smpl 0 * * * * 0 None

Sample Bank syntax and semantics Enumerators Default Modulators

153 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

46 keynum + MIDI ky# key#
0

0 lo key 127 hi key -1 None

47 velocity + MIDI vel 0 1 min vel 127 max
vel

-1 None

48 initialAttenuation .4 cB 0 0 0 dB 1440 144dB 0 None
50 endloopAddrsCoarseOffset smpls 0 * * * * 0 None
51 CoarseTune semitone 0 -120 -10 oct 120 10 oct 0 None
52 fineTune cent 0 -99 -99cnt 99 99cent 0 None
54 sampleModes + Bit Flags Flags ** ** ** ** 0 No Loop

56 scaleTuning cent/key 0 0 none 1200 oct/ky 100 semi-
tone

57 exclusiveClass + arbitrary # 0 1 -- 127 -- 0 None
58 overridingRootKey + MIDI ky# key#

0
0 lo key 127 hi key -1 None

* Range depends on values of start, loop, and end points in sample header.

** Range has discrete values based on bit flags

+ This generator is only valid at the instrument level.

5.9.3.2 Default Modulators
The “default” modulators are described below.

5.9.3.2.1 MIDI Key Velocity to Initial Attenuation
The MIDI key number is used as a Negative Unipolar source, thus the input value of 0 is mapped to a value
of 127/128, an input value of 127 is mapped to 0 and all other values are mapped between 127/128 and 0 in
a concave fashion. There is no secondary source for this modulator; thus its effect is the same as the effect
of multiplying the amount by 1. The amount of this modulator is 960 cB (or 96 dB) of attenuation.

The product of these values is added to the initial attenuation generator.

5.9.3.2.2 MIDI Key Velocity to Filter Cutoff
The MIDI key number is used as a Negative Unipolar source, thus the input value of 0 is mapped to a value
of 127/128, an input value of 127 is mapped to 0 and all other values are mapped between 127/128 and 0 in
a linear fashion. There is no secondary source for this modulator; thus its effect is the same as the effect of
multiplying the amount by 1. The amount of this modulator is -2400 Cents.

The product of these values is added to the Initial Filter Cutoff generator summing node.

5.9.3.2.3 MIDI Channel Pressure to Vibrato LFO Pitch Depth
The MIDI Channel Pressure data value is used as a Positive Unipolar source, thus the input value of 0 is
mapped to a value of 0, an input value of 127 is mapped to 127/128 and all other values are mapped
between 0 and 127/128 in a linear fashion. There is no secondary source for this modulator; thus its effect is
the same as the effect of multiplying the amount by 1. The amount of this modulator is 50 cents per max
excursion of vibrato modulation.

The product of these values is added to the Vibrato LFO to Pitch generator summing node.

Sample Bank syntax and semantics Enumerators Default Modulators

154 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.3.2.4 MIDI Continuous Controller 1 to Vibrato LFO Pitch Depth
The MIDI Continuous Controller 1 data value is used as a Positive Unipolar source, thus the input value of
0 is mapped to a value of 0, an input value of 127 is mapped to 127/128 and all other values are mapped
between 0 and 127/128 in a linear fashion. The MIDI Continuous Controller 33 data value may be
optionally used for increased resolution of the controller input.

There is no secondary source for this modulator; thus its effect is the same as the effect of multiplying the
amount by 1.

The amount of this modulator is 50 cents/max excursion of vibrato modulation.

The product of these values is added to the Vibrato LFO to Pitch generator summing node.

5.9.3.2.5 MIDI Continuous Controller 7 to Initial Attenuation
The MIDI Continuous Controller 7 data value is used as a Negative Unipolar source, thus the input value of
0 is mapped to a value of 127/128, an input value of 127 is mapped to 0 and all other values are mapped
between 127/128 and 0 in a concave fashion. There is no secondary source for this modulator; thus its effect
is the same as the effect of multiplying the amount by 1. The amount of this modulator is 960 cB (or 96 dB)
of attenuation.

The product of these values is added to the initial attenuation generator.

5.9.3.2.6 MIDI Continuous Controller 10 to Pan Position
The MIDI Continuous Controller 10 data value is used as a Positive Bipolar source, thus the input value of
0 is mapped to a value of -1, an input value of 127 is mapped to 63/64 and all other values are mapped
between -1 and 127/128 in a linear fashion. There is no secondary source for this modulator; thus its effect
is the same as the effect of multiplying the amount by 1. The amount of this modulator is 1000 tenths of a
percent panned-right.

The product of these values is added to the Pan generator summing node.

5.9.3.2.7 MIDI Continuous Controller 11 to Initial Attenuation
The MIDI Continuous Controller 11 data value is used as a Negative Unipolar source, thus the input value
of 0 is mapped to a value of 127/128, an input value of 127 is mapped to 0 and all other values are mapped
between 127/128 and 0 in a concave fashion. There is no secondary source for this modulator; thus its effect
is the same as the effect of multiplying the amount by 1. The amount of this modulator is 960 cB (or 96 dB)
of attenuation.

The product of these values is added to the initial attenuation generator.

5.9.3.2.8 MIDI Continuous Controller 91 to Reverb Effects Send
The MIDI key number is used as a Positive Unipolar source, thus the input value of 0 is mapped to a value
of 0, an input value of 127 is mapped to 127/128 and all other values are mapped between 0 and 127/128 in
a linear fashion. There is no secondary source for this modulator; thus its effect is the same as the effect of
multiplying the amount by 1.

The amount of this modulator is 200 tenths of a percent added reverb send.

The product of these values is added to the Reverb Send generator summing node.

Sample Bank syntax and semantics EnumeratorsPrecedence and Absolute and Relative values.

155 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.3.2.9 MIDI Continuous Controller 93 to Chorus Effects Send
The MIDI key number is used as a Positive Unipolar source, thus the input value of 0 is mapped to a value
of 0, an input value of 127 is mapped to 127/128 and all other values are mapped between 0 and 128 in a
linear fashion. There is no secondary source for this modulator; thus its effect is the same as the effect of
multiplying the amount by 1.

The amount of this modulator is 200 tenths of a percent added chorus send.

The product of these values is added to the Chorus Send generator summing node.

5.9.3.2.10 MIDI Pitch Wheel to Initial Pitch Controlled by MIDI Pitch Wheel Sensitivity
The MIDI Pitch Wheel data values are used as a Positive Bipolar source, thus the input value of 0 is
mapped to a value of -1, an input value of 16383 is mapped to 8191/8192 and all other values are mapped
between -1 and 8191/8192 in a linear fashion.

The MIDI Pitch Wheel Sensitivity data values are used as a secondary source. This source is Positive
Unipolar, thus an input value of 0 is mapped to a value of 0, an input value of 127 is mapped to 127/128
and all other values are mapped between 0 and 127/128 in a linear fashion.

The amount of this modulator is 12700 Cents.

The product of these values is added to the Initial Pitch generator summing node.

5.9.3.3 Precedence and Absolute and Relative values.
Most SASBF generators are available at both the Instrument and Preset Levels, as well as having a default
value. Generators at the Instrument Level are considered “absolute” and determine an actual physical value
for the associated synthesis parameter, which is used instead of the default. For example, a value of 1200
for the attackVolEnv generator would produce an absolute time of 1200 timecents or 2 seconds of attack
time for the volume envelope, instead of the default value of -12000 timecents or 1 msec.

Generators at the Preset Level are instead considered “relative” and additive to all the default or instrument
level generators within the Preset Zone. For example, a value of 2400 timecents for the attackVolEnv
generator in a preset zone containing an instrument with two zones, one with the default attackVolEnv and
one with an absolute attackVolEnv generator value of 1200 timecents would cause the default zone to
actually have a value of -9600 timecents or 4 msec, and the other to have a value of 3600 timecents or 8
seconds attack time.

There are some generators which are not available at the Preset Level. These are:

Name
0 startAddrsOffset
1 endAddrsOffset
2 startloopAddrsOffset
3 endloopAddrsOffset
4 startAddrsCoarseOffset
12 endAddrsCoarseOffset
45 startloopAddrsCoarseOffset
46 keynum
47 velocity
50 endloopAddrsCoarseOffset
54 sampleModes

Sample Bank syntax and semantics Parameters and Synthesis Model Synthesis Model

156 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

57 exclusiveClass
58 overridingRootKey
If these generators are encountered in the Preset Level, they should be ignored.

The effect of modulators on a given destination is always relative to the generator value at the Instrument
level. However modulators may supersede or add to other modulators depending on their position within the
hierarchy. Please see Subclause 8.4 for details on the Modulator implementation and the hierarchical
details.

5.9.4 Parameters and Synthesis Model

The SASBF standard has been established with the intent of providing support for an expanding base of
wavetable based synthesis models. The model supported by the SASBF specification originates with the
EMU8000 wavetable synthesiser chip. The description below of the underlying synthesis model and the
associated parameters are provided to allow mapping of this synthesis model onto other hardware platforms.

5.9.4.1 Synthesis Model
The SASBF specification Synthesis Model comprises a wavetable oscillator, a dynamic lowpass filter, an
enveloping amplifier, and programmable sends to pan, reverb, and chorus effects units. An underlying
modulation engine comprises two low frequency oscillators (LFOs) and two envelope generators with
appropriate routing amplifiers.

5.9.4.1.1 Wavetable Oscillator/Interpolator
The SASBF specification wavetable oscillator model is capable of playing back a sample at an arbitrary
sampling rate with an arbitrary pitch shift. In practice, the upward pitch shift (downward sample rate
conversion) will be limited to a maximum value, typically at least two octaves. The pitch is described in
terms of an initial pitch shift which is based on the sample’s sampling rate, the root key at which the sample
should be unshifted on the keyboard, the coarse, fine, and correction tunings, the effective MIDI key
number, and the keyboard scale factor. All modulations in pitch are in octaves, semitones, and cents.

In general, interpolators have a symmetric impulse response, and thus a linear phase characteristic. The
interpolation filter’s magnitude response can be characterised by three regions - the pass band, the transition
band, and the stop band.

The interpolation filter’s pass band is the portion of its response which corresponds to the frequencies of the
signal stored in waveform memory from DC to that signal’s Nyquist frequency

The interpolation filter’s transition band is the portion of its response which corresponds to the first image
of the signal stored in waveform memory, that is from that signal’s Nyquist frequency back to DC.

The interpolation filter’s stop band is the portion of its response which corresponds to the remaining images
above the transition band to the Nyquist frequency of the upsampled signal.

The guardband will be assumed to begin at 5/6 of the Nyquist frequency, as is the case for a 20 kHz
bandwidth in a 48 kHz sample rate system.

Due to poor aliasing rejection in the stopband, linear interpolation does not satisfy this specification.

The specification constrains the Fourier transform of the impulse response of the interpolator. The impulse
response is taken with a downward pitch shift of eight octaves. This gives a response which has been
upsampled by a factor of 2**8 or 256. In other words, a frequency of the impulse response’s Nyquist

Sample Bank syntax and semantics Parameters and Synthesis Model Synthesis Model

157 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

frequency divided by 256 gives the filter frequency corresponding to the waveform memory’s Nyquist
frequency. In the specification below, Fn represents this waveform memory Nyquist frequency.

(All responses measured with downward pitch shift of 8 octaves.)

Passband Response:

Ripple: No more than +/- 0.5 dB

Roll-off: Minimal, but not to exceed 6 dB at 83.3% Fn.

Transition Band Response:

Roll-off: Monotonic and as rapid as possible to at least -80 dB attenuation

Return Lobes: None above -80 dB

Attenuation: Greater than 80 dB for all frequencies DC to at least 2% Fn in the first lobe.

Stop Band Response:

Attenuation: Greater than 90 dB for all frequencies DC to at least 1% Fn

Greater than 80 dB for all frequencies DC to at least 20%Fn

Greater than 60 dB for all frequencies

5.9.4.1.2 Sample Looping
The wavetable oscillator is playing a digital sample which is described in terms of a start point, end point,
and two points describing a loop. The sound can be flagged as unlooped, in which case the loop points are
ignored. If the sound is looped, it can be played in two ways. If it is flagged as “loop during release”, the
sound is played from the start point through the loop, and loops until the note becomes inaudible. If not, the
sound is played from the start point through the loop, and loops until the key is released. At this point, the
next time the loop end point is reached, the sound continues through the loop end point and plays until the
end point is reached, at which time audio is terminated.

5.9.4.1.3 Lowpass Filter
The synthesis model contains a resonant lowpass filter, which is characterised by a dynamic cutoff
frequency and a fixed resonance (Q).

The filter is idealised at zero resonance as having a flat passband to the cutoff frequency, then a rolloff at 12
dB per octave above that frequency. The resonance, when non-zero, comprises a peak at the cutoff
frequency, superimposed on the above response. The resonance is measured as a dB ratio of the resonant
peak to the DC gain. The DC gain at any resonance is half of the resonance value below the DC gain at
zero resonance; hence the peak height is half the resonance value above DC gain at zero resonance.

All modulations in cutoff frequency are in cents.

Sample Bank syntax and semantics Parameters and Synthesis Model Synthesis Model

158 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Topology: 2nd order AR lowpass filter or equivalent. Filter coefficients are updated in a smooth manner at
the sample rate.

Noise and Distortion: Less than 0.003% of full scale on any sinusoidal input for any parameter setting.

Control Parameters: Cutoff Frequency and Resonance.

Resonance Parameter: Specifies the ratio in decibels of the gain of a resonant peak to the gain at DC, when
the filter cutoff frequency is set to 1.5 kHz and the modulation is zero. The DC gain of a filter is reduced
from the DC gain of a filter with zero resonance by half the resonance value. The resonance parameter will
remain fixed throughout the sounding of a musical note.

For a specified resonance, the actual gain ratio should be accurate within +/- 1 dB, and the DC gain accurate
within +/-0.5 dB. The ratio of the gain at the resonant peak to the DC gain for all cutoff frequency values
shall not deviate by more than 2dB per octave deviation from 1.5 kHz. Nominal gain at DC for a minimum
resonance parameter is unity gain.

Cutoff Frequency Parameter: Specifies the frequency at which the filter achieves exactly 3dB of
attenuation. The Cutoff Frequency is computed by the combination of the Initial Cutoff Frequency,
specified in Hz, and the modulation, specified in semitones and fractions thereof. The Initial Cutoff
Frequency is fixed throughout the duration of the a musical note; the modulation can vary at the sample
rate. Within the region from 200 Hz to 6.4 kHz, the cutoff frequency parameter accuracy will be +/- 2
semitones.

Frequency Magnitude Response: When the cutoff frequency is at its maximum value and the resonance is
at zero, the filter must pass audio without alteration. The filter must support cutoff frequencies down to 200
Hz. There must be a minimum of 2048 distinct cutoff frequencies per octave within the region from 200 Hz
to 6.4 kHz, with a worst case spacing between distinct frequencies of 0.01 semitones.

5.9.4.1.4 Final Gain Amplifier
The final gain amplifier is a multiplier on the filter output, which is controlled by an initial gain in dB. This
is added to the volume envelope. Additional modulation can also be added. The gain is always specified in
dB.

5.9.4.1.5 Effects Sends
The output of the final gain amplifier can be routed into the effects unit. This unit causes the sound to be
located (panned) in the stereo field, and a degree of reverberation and chorus to be added. The pan is
specified in terms of percentage left and right, which also could be considered as an azimuth angle. The
reverb and chorus sends are specified as a percentage of the signal amplitude to be sent to these units, from
0% to 100%.

5.9.4.1.6 Low Frequency Oscillators
The synthesis model provides for two low frequency oscillators (LFOs) for modulating pitch, filter cutoff,
and amplitude. The “vibrato” LFO is only capable of modulating pitch. The “modulation” LFO can
modulate any of the three parameters.

An LFO is defined as having a delay period during which its value remains zero, followed by a triangular
waveshape ramping linearly to positive one, then downward to negative 1, then upward again to positive
one, etc.

Sample Bank syntax and semantics Parameters and Synthesis Model Synthesis Model

159 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Each parameter can be modulated to a varying degree, either positively or negatively, by the associated
LFO. Modulations of pitch and cutoff are in octaves, semitones, and cents, while modulations of amplitude
are in dB. The degree of modulation is specified in cents or dB for the full scale positive LFO excursion.

5.9.4.1.7 Envelope Generators
The synthesis model provides for two envelope generators. The volume envelope generator controls the
final gain amplifier and hence determines the volume contour of the sound. The modulation envelope can
control pitch and/or filter cutoff.

An envelope generates a control signal in six phases. When key-on occurs, a delay period begins during
which the envelope value is zero. The envelope then rises in a convex curve to a value of one during the
attack phase. When a value of one is reached, the envelope enters a hold phase during which it remains at
one. When the hold phase ends, the envelope enters a decay phase during which its value decreases linearly
to a sustain level. When the sustain level is reached, the envelope enters sustain phase, during which the
envelope stays at the sustain level. Whenever a key-off occurs, the envelope immediately enters a release
phase during which the value linearly ramps from the current value to zero. When zero is reached, the
envelope value remains at zero.

Modulation of pitch and filter cutoff are in octaves, semitones, and cents. These parameters can be
modulated to varying degree, either positively or negatively, by the modulation envelope. The degree of
modulation is specified in cents for the full scale attack peak.

The volume envelope operates in dB, with the attack peak providing a full scale output, appropriately scaled
by the initial volume. The zero value, however, is actually zero gain. When 96 dB of attenuation is reached
in the final gain amplifier, an abrupt jump to zero gain (infinite dB of attenuation) occurs. In a 16-bit
system, this jump is inaudible.

5.9.4.1.8 Modulation Interconnection Summary
The following diagram shows the interconnections expressed in the SASBF specification synthesis model:

Sample Bank syntax and semantics Parameters and Synthesis Model MIDI Functions

160 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Oscillator Filter Amplifier

Modulation
Envelope

Reverb

Chorus

Vibrato
LFO

Modulation
LFO

Volume
Envelope

Pitch Fc Volume

Figure 1: Generator Based Modulation Structure

5.9.4.2 MIDI Functions
The response to certain MIDI commands is defined within the MIDI specification, and therefore not
considered to be part of the SASBF specification. These MIDI commands may not be used as sources for
the Modulator implementation.

For completeness, the expected responses are given here.

MIDI CC0 Bank Select - When received, the following program change should select the MIDI program in
this bank value instead of the default bank of 0.

MIDI CC6 - Data Entry MSB - When received, its value should be sent to either the RPN or NRPN
implementation mechanism depending on the Data Entry mode.

MIDI CC32 Bank Select LSB - When received, may behave in conjunction with CC0 Bank Select to
provide a total of 16384 possible MIDI banks of programs.

MIDI CC38 Data Entry LSB - When received, its value should be sent to either the RPN or NRPN
implementation mechanism, depending on the Data Entry mode.

MIDI CC64 Sustain - ACTIVE when greater than or equal to 64. When the sustain function is active, all
notes in the key-on state remain in the key-on state regardless of whether a key-off command for the note
arrives. The key-off commands are stored, and when sustain becomes inactive, all stored key-off
commands are executed.

MIDI CC66 Soft - ACTIVE when greater than or equal to 64. When active, all new key-ons are modulated
in such a way to make the note sound “soft.” This typically affects initial attenuation and filter cutoff in a
pre-defined manner.

Sample Bank syntax and semantics Parameters and Synthesis Model Parameter Units

161 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

MIDI CC67 Sostenuto - ACTIVE when greater than or equal to 64. When sostenuto becomes active, all
notes currently in the key-on state remain in the key-on state until the sostenuto becomes inactive. All other
notes behave normally. Notes maintained by sostenuto in key-on state remain in key-on state even if sustain
is switched on and off.

MIDI CC98 NRPN LSB - When received, should be processed by the NRPN implementation mechanism.

MIDI CC99 NRPN MSB - When received, should put the synthesiser in NRPN Data Entry mode and then
should be processed by the NRPN implementation mechanism.

MIDI CC100 RPN LSB - When received, should be processed by the RPN implementation mechanism.

MIDI CC101 RPN MSB - When received, should put the synthesiser in RPN Data Entry mode and then
should be processed by the RPN implementation mechanism.

MIDI CC120 All Sound Off - When received with any data value, all notes playing in the key-on state
bypass the release phase and are shut off, regardless of the sustain or sostenuto positions.

MIDI CC121 Reset All Controllers - Defined as Reset All Controllers as defined by the MIDI specification.

MIDI CC123 All Notes Off - When received with any data value, all notes playing in the key-on state
immediately enter release phase, pending their status in SUSTAIN or SOSTENUTO state.

5.9.4.3 Parameter Units
The units with which SASBF generators are described are all well defined. The strict definitions appear
below:

ABSOLUTE SAMPLE DATA POINTS - A numeric index of 16 bit sample data point words as stored in
ROM or supplied in the smpl-ck, indexing the first sample data point word of memory or the chunk as zero.

RELATIVE SAMPLE DATA POINTS - A count of 16 bit sample data point words based on an absolute
sample data point reference. A negative value implies a relative count toward the beginning of the data.

ABSOLUTE SEMITONES - An absolute logarithmic measure of frequency based on a reference of MIDI
key numbers. A semitone is 1/12 of an octave, and value 69 is 440 Hz (A-440). Negative values and
values above 127 are allowed.

RELATIVE SEMITONES - A relative logarithmic measure of frequency ratio based on units of 1/12 of an
octave, which is the twelfth root of two, approximately 1.059463094.

ABSOLUTE CENTS - An absolute logarithmic measure of frequency based on a reference of MIDI key
number scaled by 100. A cent is 1/1200 of an octave, and value 6900 is 440 Hz (A-440). Negative values
and values above 12700 are allowed.

RELATIVE CENTS - A relative logarithmic measure of frequency ratio based on units of 1/1200 of an
octave, which is the twelve hundredth root of two, approximately 1.000577790.

ABSOLUTE CENTIBELS - An absolute measure of the attenuation of a signal, based on a reference of
zero being no attenuation. A centibel is a tenth of a decibel, or a ratio in signal amplitude of the two
hundredth root of 10, approximately 1.011579454.

RELATIVE CENTIBELS - A relative measure of the attenuation of a signal. A centibel is a tenth of a
decibel, or a ratio in signal amplitude of the two hundredth root of 10, approximately 1.011579454.

Sample Bank syntax and semantics Parameters and Synthesis Model The SASBF Generator Model

162 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

ABSOLUTE TIMECENTS - An absolute measure of time, based on a reference of zero being one second.
A timecent represents a ratio in time of the twelve hundredth root of two, approximately 1.011579454.

RELATIVE TIMECENTS - A relative measure of time ratio, based on a unit size of the twelve hundredth
root of two, approximately 1.011579454.

ABSOLUTE PERCENT - An absolute measure of gain, based on a reference of unity. In SASBF, absolute
percent is measured in 0.1% units, so a value of zero is 0% and a value of 1000 is 100%.

RELATIVE PERCENT - A relative measure of gain difference. In SASBF, relative percent is measured in
0.1% units. When the gain goes below zero, zero is assumed; when the gain exceeds 100%, 100% is used.

5.9.4.4 The SASBF Generator Model
Five kinds of Generator Enumerators exist: Index Generators, Range Generators, Substitution Generators,
Sample Generators, and Value Generators.

In case it is not clear in the general description of the SASBF hierarchy, the following is the precedence of
SASBF generator in the hierarchy.

• A ‘generator’ sets or offsets the value of a destination or a synthesis parameter. In exception
cases, it sets ranges (Range Generators), or sets values and never offsets values (Index
Generators, Sample Generators, and Substitution Generators).

• A generator is defined as identical to another generator if its generator operator is the same in
both generators.

• A generator in a global instrument zone which is identical to a default generator supersedes or
replaces the default generator.

• A generator in a local instrument zone which is identical to a default generator or to a generator
in a global instrument zone supersedes or replaces that generator.

• Points below (until noted) apply to Value Generators ONLY.

• A generator at the preset level adds to a generator at the instrument level if both generators are
identical.

• A generator in a global preset zone which is identical to a default generator or to a generator in
an instrument adds to that generator.

• A generator in a global preset zone which is not identical to a default generator and is not
identical to a generator in an instrument has its effect added to the given synthesis parameter.

• A generator in a local preset zone which is identical to a generator in a global preset zone
supersedes or replaces that generator in the global preset zone. That generator then has its effects
added to the destination summing node of all zones in the given instrument.

• A generator in a local preset zone which is not identical to a default generator or a generator in a
global preset zone has its effects added to the destination summing node of all zones in the given
instrument.
If the generator operator is a Range Generator, the generator values are NOT ADDED to those

Sample Bank syntax and semantics Error HandlingThe SASBF Modulator Controller Model

163 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

in the instrument level, rather they serve as an intersection filter to those key number or velocity
ranges in the instrument which is used in the preset zone.

• If the generator operator is a Substitution Generator or a Sample Generator, they are illegal at
the preset level. The only Index Generator legal at the Preset Level is ‘instrumentID’, whereas
the only Index Generator legal at the Instrument Level is ‘sampleID’

5.9.4.5 The SASBF Modulator Controller Model
SASBF Modulators are used to allow real-time control over the sound in sound designer programmable
manner. Each instance of a SASBF modulator structure defines a real-time perceptually additive effect to be
applied to a given destination or synthesiser parameter.

Modulators provide future extensibility to the SASBF standard. They are not used in this version.

5.9.5 Error Handling

5.9.5.1 Structural Errors
Structural Errors are errors which are determined from the implicit redundancy of the SASBF RIFF
bitstream element structure, and indicate that the structure is not intact. Examples are incorrect lengths for
the chunks or subchunks, pointers out of valid range, or missing required chunks or subchunks for which no
error correction procedure exists.

In all cases, bitstream elements should be checked for structural errors at load time, and if any are found,
the bitstream elements should be rejected. Separate tools or options can be used to “repair” structurally
defective bitstream elements, but these tools should validate that the reconstructed bitstream element is not
only a valid SASBF bank but also complies with the intended timbral results in all cases.

5.9.5.2 Unknown Chunks
In parsing the RIFF structure, unknown but well formed chunks or subchunks may be encountered.
Unknown chunks within the INFO-list chunk should simply be ignored. Other unknown chunks or
subchunks are illegal and should be treated as structural errors.

5.9.5.3 Unknown Enumerators
Unknown enumerators may be encountered in Generators, Modulator Sources, or Transforms. This is to be
expected if the ifil field exceeds the specification to which the application was written. Even if unexpected,
unknown enumerators should simply cause the associated Generator or Modulator to be ignored.

5.9.5.4 Illegal Parameter Values
Some SASBF parameters are defined for only a limited range of the possible values which can be expressed
in their field. If the value of the field is not in the defined range, the parameter has an illegal value.

Illegal values for may be detected either at load or at run time. If detected at load time, the bitstream
element may optionally be rejected as structurally unsound. If detected at run time, the default value for the
parameter should be used if the parameter is required, or the entire Generator or Modulator ignored if it is
optional. Certain parameters may have more specific procedures for illegal values as expressed elsewhere
in this specification.

Sample Bank syntax and semantics Profile 2 (Sample Bank and MIDI decoding) Out-of-range Values

164 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.9.5.5 Out-of-range Values
SASBF parameters have a specified minimum and useful range the span the perceptually relevant values for
the associated sonic property. When the parameter value is exceeds this useful range, the parameter is said
to have an out of range value.

Out of range values can result from two distinct causes. An out of range value can be actually present as a
SASBF generator value, or the out of range value can be the result of the summation of instrument and
preset values.

Out of range values should be handled by substituting the nearest perceptually relevant or realisable value.
SASBF banks should not be created with out of range values in the instrument generators. While it is
acceptable practice to create SASBF banks which produce out of range values as a result of summation, it is
undesirable and should be avoided where practical.

5.9.5.6 Missing Required Parameter or Terminator
Certain parameters and terminators are required by the SASBF specification. If these are missing, the
bitstream element is technically not within specification. If such a problem is detected at load time, the
bitstream element may optionally be rejected as structurally unsound. If detected at run time, the instrument
or zone for which the required parameter is missing should simply be ignored. If this causes no sound, the
corresponding key-on event is ignored.

5.9.5.7 Illegal enumerator
Certain enumerators are illegal in certain contexts. For example, key and velocity ranges must be the first
generators in a zone, instruments are not allowed in instrument zones, and sampleIDs are not allowed in
preset zones. If such a problem is detected at load time, the bitstream element may optionally be rejected as
structurally unsound. If detected at run time, the enumerator should simply be ignored.

5.9.6 Profile 2 (Sample Bank and MIDI decoding)

This Subclause describes the decoding process in which a bitstream conforming to Profile 2 is converted
into sound. Profile 2 supports the Structured Audio Sample Bank Format and the General MIDI Format
(Profile 1) for sound description. Profile 2 supports the MIDI Protocol and the Standard MIDI File Format
for score specification.

5.9.6.1 Stream information header
The SASBF bitstream element is part of the bitstream header. Score elements in the form of MIDI files
may be included in the bitstream header.

At the creation of a Structured Audio Elementary Stream, a Structured Audio decoder is instantiated and a
bitstream object of class SA_streaminfo provided to that decoder as configuration information. At this
time, the decoder shall initialise a run-time scheduler, and then parse the stream information object into its
component parts and use them as follows:

• MIDI file: The events in the MIDI file shall be time ordered, and those events registered with
the scheduler.

• Sample bank: The data in the bank shall be stored, and whatever preprocessing necessary to
prepare for using the bank for synthesis shall be performed. The sample bank requires no
processing for this preparation. Processing may be used to improve the computational

Sample Bank syntax and semanticsProfile 4 (Sample Bank decoding in SAOL instruments)Bitstream data and sound creation

165 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

efficiency of a decoder. Banks shall be assigned consecutive increasing bank ID numbers in
the order of the banks’ position in the bitstream. The first bank in the bitstream shall be
numbered 0 unless a bank resident in the terminal is being used. In that case, the resident
bank shall be numbered 0, an other banks shall be numbered proceeding from there.

5.9.6.2 Bitstream data and sound creation
The MIDI Note On message is defined in the MIDI specification. When the SASBF decoder receives a
Note On message, a voice shall be instantiated. Synthesis parameters for the voice shall be determined by
the data in the sample bank containing the preset corresponding to the MIDI channel of the Note On
message. The number of wavetable oscillators that are used by the voice is defined by the sample bank.
Each required oscillator shall have the state variables required for synthesis allocated to it. The state
variables shall be initialised according to the preset data from the sample bank.

The MIDI Program Change message is defined in the MIDI specification. When the SASBF decoder
receives a Program Change message, an assignment shall be made in the scheduler between the specified
MIDI channel and the specified preset. Until this assignment is changed by a subsequent Program Change
message, subsequent voice instantiations using the specified MIDI channel shall use sample bank data
corresponding to the assigned preset. In a MIDI program change message, if no preset exists in the
specified bank with the specified preset number, a replacement preset is used. The replacement preset is the
preset with the specified preset number in the bank with the highest bank ID number less than the specified
bank ID number which contains a preset with the specified preset number.

The run time scheduler is used to issue MIDI messages to the SASBF decoder. MIDI messages from a
MIDI standard file shall be issued by the scheduler when the scheduler clock equals or exceeds the time
stamp associated with the message.

5.9.6.3 Conformance
Floating point computation is not required in Profile 2. Audio samples are stored in the bitstream as 16-bit
integers. The resolution of the interpolator filter is constrained by the interpolator specification given in
Subclause 0.

5.9.7 Profile 4 (Sample Bank decoding in SAOL instruments)

5.9.8 Sample Bank Format Glossary

absolute - Describes a parameter which gives a definitive real-world value. Contrast to relative.

additive - Describes a parameter which is to be numerically added to another parameter.

articulation - The process of modulation of amplitude, pitch, and timbre to produce an expressive musical
note.

attack - That phase of an envelope or sound during which the amplitude increases from zero to a peak value.

attenuation - A decrease in volume or amplitude of a signal.

bag - A Sample Bank Format data structure element containing a list of zones.

balance - A form of stereo volume control in which both left and right channels are at maximum when the
control is centred, and which attenuates only the opposite channel when taken to either extreme.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

166 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

bank - A collection of presets. See also MIDI bank.

bipolar - In the SASBF standard, said of a modulator source whose minimum is -1 and whose maximum is
1. Contrast “unipolar”

big endian - Refers to the organisation in memory of bytes within a word such that the most significant byte
occurs at the lowest address. Contrast “little endian.”

byte - A data structure element of eight bits without definition of meaning to those bits.

BYTE - A data structure element of eight bits which contains an unsigned value from 0 to 255.

case-insensitive - Indicates that an ASCII character or string treats alphabetic characters of upper or lower
case as identical. Contrast “case-sensitive.”

case-sensitive - Indicates that an ASCII character or string treats alphabetic characters of upper or lower
case as distinct. Contrast “case-insensitive.”

cent - A unit of pitch ratio corresponding to the twelve hundredth root of two, or one hundredth of a
semitone, approximately 1.000577790.

centibel - A unit of amplitude ratio corresponding to the two hundredth root of ten, or one tenth of a decibel,
approximately 1.011579454.

CHAR - A data structure of eight bits which contains a signed value from -128 to +127.

chorus - An effects processing algorithm which involves cyclically shifting the pitch of a signal and
remixing it with itself to produce a time varying comb filter, giving a perception of motion and fullness to
the resulting sound.

chunk - The top-level division of a RIFF file.

convex - A curve which is bowed in such a way that it is steeper on its lower portion.

concave - (1) A curve which is bowed in such a way that it is steeper on its upper portion. (2) In the SASBF
standard, said of a modulator source whose shape is that of the amplitude squared characteristic. Contrast
with “convex” and “linear.”

cutoff frequency - The frequency of a filter function at which the attenuation reaches a specified value.

data points - The individual values comprising a sample. Sometimes also called sample points. Contrast
“sample.”

decay - The portion of an envelope or sound during which the amplitude declines from a peak to steady
state value.

decibel - A unit of amplitude ratio corresponding to the twentieth root of ten, approximately 1.122018454.

delay - The portion of an envelope or LFO function which elapses from a key-on event until the amplitude
becomes non-zero.

destination - The generator to which a modulator is applied.

DC gain - The degree of amplification or attenuation a system presents to a static or zero frequency signal.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

167 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

digital audio - Audio represented as a sequence of quantised values spaced evenly over time. The values
are called “sample data points.”

doubleword - A data structure element of 32 bits without definition of meaning to those bits.

downloadable - Said of samples which are loaded from a file into RAM, in contrast to samples which are
maintained in ROM.

dry - Refers to audio which has not received any effects processing such as reverb or chorus.

DWORD - A data structure of 32 bits which contains an unsigned value from zero to 4,294,967,295.

envelope - A time varying signal which typically controls the pitch, volume, and/or filter cutoff frequency of
a note, and comprises multiple phases including attack, decay, sustain, and release.

enumerated - Said of a data element whose symbols correspond to particular assigned functions.

flat - A. Said of a tone that is lower in pitch than another reference tone. B. Said of a frequency response
that does not deviate significantly from a single fixed gain over the audio range.

generator - In the SASBF standard, a parameter which directly affects sound reproduction. Contrast with
“modulator.”

global - Refers to parameters which affect all associated structures. See “global zone.”

global zone - A zone whose generators and modulators affect all other zones within the object.

header - A data structure element which describes several aspects of a SASBF element.

instrument - In the SASBF standard, a collection of zones which represents the sound of a single musical
instrument or sound effect set.

instrument zone - A sample and associated articulation data defined to play over certain key numbers and
velocities.

interpolator - A circuit or algorithm which computes intermediate points between existing sample data
points. This is of particular use in the pitch shifting operation of a wavetable synthesiser, in which these
intermediate points represent the output samples of the waveform at the desired pitch transposition.

key number - See MIDI key number.

LFO - Acronym for Low Frequency Oscillator. A slow periodic modulation source.

linear - In the SASBF standard, said of a modulator source whose shape is that of a straight line. Contrast
with “concave.”

linear coding - The most common method of encoding amplitudes in digital audio in which each step is of
equal size.

little endian - A method of ordering bytes within larger words in memory in which the least significant byte
is at the lowest address. Contrast “big endian.”

loop - In wavetable synthesis, a portion of a sample which is repeated many times to increase the duration of
the resulting sound.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

168 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

loop points - The sample data points at which a loop begins and ends.

lowpass - Said of a filter which attenuates high frequencies but does not attenuate low frequencies.

modulator - In the SASBF standard, a parameter which routes an external controller to dynamically alter the
setting of a “generator.” Contrast with “generator.”

monotonic - Continuously increasing or decreasing. Said of a sequence which never reverses direction.

MIDI - Acronym for Musical Instrument Digital Interface. The standard protocol for sending performance
information to a musical synthesiser.

MIDI bank - A group of up to 128 presets selected by a MIDI “change bank” command.

MIDI continuous controller - A construct in the MIDI protocol.

MIDI key number - A construct in the MIDI protocol which accompanies a MIDI key-on or key-off
command and specifies the key of the musical instrument keyboard to which the command refers.

MIDI pitch bend - A special MIDI construct akin to the MIDI continuous controllers which controls the
real-time value of the pitch of all notes played in a MIDI channel.

MIDI preset - A “preset” selected to be active in a particular MIDI channel by a MIDI “change preset”
command.

MIDI velocity - A construct in the MIDI protocol which accompanies a MIDI key-on or key-off command
and specifies the speed with which the key was pressed or released.

modulator - In the SASBF standard, a set of parameters which affect a particular generator. Contrast with
“generator.”

mono - Short for “monophonic.” Indicates a sound comprising only one channel or waveform. Contrast
with “stereo.”

negative - In the SASBF standard, said of a modulator which has a negative sloping characteristic. Contrast
with “positive.”

octave - A factor of two in ratio, typically applied to pitch or frequency.

orphan - Said of a data structure which under normal circumstances is referenced by a higher level, but in
this particular instance is no longer linked. Specifically, it is an instrument which is not referenced by any
preset zone, or a sample which is not referenced by any instrument zone.

oscillator - In wavetable synthesis, the wavetable interpolator is considered an oscillator.

pan - Short for “panorama.” This is the control of the apparent azimuth of a sound source over 180 degrees
from left to right. It is generally implemented by varying the volume at the left and right speakers.

pitch - The perceived value of frequency. Generally can be used interchangeably with frequency.

pitch shift - A change in pitch. Wavetable synthesis relies on interpolators to cause pitch shift in a sample
to produce the notes of the scale.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

169 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

pole - A mathematical term used in filter transform analysis. Traditionally in synthesis, a pole is equated
with a rolloff of 6dB per octave, and the rolloff of a filter is specified in “poles.”

positive - In the SASBF standard, said of a modulator source which has a positive sloping characteristic.
Contrast “negative.”

preset - A keyboard full of sound. Typically the collection of samples and articulation data associated with
a particular MIDI preset number.

preset zone - A subset of a preset containing generators, modulators, and an instrument.

proximal - Closest to. Proximal sample data points are the data points closest in either direction to the
named point.

Q - A mathematical term used in filter transform analysis. Indicates the degree of resonance of the filter. In
synthesis terminology, it is synonymous with resonance.

RAM - Random Access Memory. Conventionally, this term implies read-write memory. Contrast “ROM.”

record - A single instance of a data structure.

relative - Describes a parameter which merely indicates an offset from an otherwise established value.
Contrast to absolute.

release - The portion of an envelope or sound during which the amplitude declines from a steady state to
zero value or inaudibility.

resonance - Describes the aspect of a filter in which particular frequencies are given significantly more gain
than others. The resonance can be measured in dB above the DC gain.

resonant frequency - The frequency at which resonance reaches its maximum.

reverb - Short for reverberation. In synthesis, a synthetic signal processor which adds artificial
spaciousness and ambience to a sound.

RIFF - Acronym for Resource Interchange File Format.

ROM - Acronym for Read Only Memory. A memory whose contents are fixed at manufacture, and hence
cannot be written by the user. Contrast with RAM.

sample - This term is often used both to indicate a “sample data point” and to indicate a collection of such
points comprising a digital audio waveform. The latter meaning is exclusively used in this Subclause (the
SASBF specification.)

sample rate - The frequency, in Hertz, at which sample data points are taken when recording a sample.

semitone - A unit of pitch ratio corresponding to the twelfth root of two, or one twelfth of an octave,
approximately 1.059463094.

sharp - Said of a tone that is higher in pitch than another reference tone.

SHORT - A data structure element of sixteen bits which contains a signed value from -32,768 to +32,767.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

170 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

soft - The pedal on a piano, so named because it causes the damper to be lowered in such a way as to soften
the timbre and loudness of the notes. In MIDI, continuous controller #66, which behaves in a similar
manner.

sostenuto - The pedal on a piano which causes the dampers on all keys depressed to be held until the pedal
is released. In MIDI, continuous controller #67, which behaves in a similar manner.

sustain - The pedal on a piano which prevents all dampers on keys as they are depressed from being
released. In MIDI, continuous controller #64, which behaves in a similar manner.

source - In a SASBF modulator, the enumerator indicating the particular real-time value which the
modulator will transform, scale, and add to the destination generator.

stereo - Literally indicating three dimensions. In this specification, the term is used to mean two channel
stereophonic, indicating that the sound is composed of two independent audio channels, dubbed left and
right. Contrast monophonic.

subchunk - A division of a RIFF file below that of the chunk.

synthesis engine - The hardware and software associated with the signal processing and modulation path for
a particular synthesiser.

synthesiser - A device ideally capable of producing arbitrary musical sound.

terminator - A data structure element indicating the final element in a sequence.

timecent - A unit of duration ratio corresponding to the twelve hundredth root of two, or one twelve
hundredth of an octave, approximately 1.000577790.

transform - In a SASBF modulator, the enumerator indicating the particular transfer function through which
the source will be passed prior to scaling and addition to the destination generator.

tremolo - A periodic change in amplitude of a sound, typically produced by applying a low frequency
oscillator to the final volume amplifier.

triangular - A waveform which ramps upward to a positive limit, then downward at the opposite slope to the
symmetrically negative limit periodically.

unipolar - In the SASBF standard, said of a modulator source whose minimum is 0 and whose maximum is
1. Contrast “bipolar.”

velocity - In synthesis, the speed with which a keyboard key is depressed, typically proportionally to the
impact delivered by the musician. See also MIDI velocity.

vibrato - A periodic change in the pitch of a sound, typically produced by applying a low frequency
oscillator to the oscillator pitch.

volume - The loudness or amplitude of a sound, or the control of this parameter.

wavetable - A music synthesis technique wherein musical sounds are recorded or computed mathematically
and stored in a memory, then played back at a variable rate to produce the desired pitch. Additional timbral
adjustments are often made to the sound thus produced using amplifiers, filters, and effects processing such
as reverb and chorus.

Sample Bank syntax and semantics Sample Bank Format Glossary Conformance

171 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

WORD - A data structure of 16 bits which contains an unsigned value from zero to 65,535.

word - A data structure element of 16 bits without definition of meaning to those bits.

zone - An object and associated articulation data defined to play over certain key numbers and velocities.

MIDI semantics Introduction Introduction

172 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.10 MIDI semantics

5.10.1 Introduction

This Subclause describes the normative decoding process for Profile 1 implementations, and the normative
mapping from MIDI events in the stream information header and bitstream data into SAOL semantics for
Profile 4 implementations.

The MIDI standards referenced are standardised externally by the MIDI Manufacturers Association. In
particular, we reference the Standard MIDIFile format, the MIDI protocol, and the General MIDI patch
mapping, all standardised in [MIDI]. The MIDI terminology used in this Subclause is defined in that
document.

5.10.2 Profile 1 decoding process

Little normative needs be said about the Profile 1 decoding process. The rules given in [MIDI] apply as
standardised in those documents. As described in Subclause 5.2, only midi and midi_file bitstream
elements shall occur in a Profile 1 bitstream.

There are no normative aspects to producing sound in Profile 1.

5.10.3 Mapping MIDI events into orchestra control

5.10.3.1 Introduction
For Profile 4, events coded as MIDI data must be converted, when they are received in the terminal as part
of a Standard MIDIFile or MIDI event, into the appropriate scheduler semantics. This Subclause lists the
various MIDI events and their corresponding semantics in MPEG-4.

5.10.3.2 MIDI events

5.10.3.2.1 Introduction
This Subclause describes the semantics of the various types of events that may arrive in a continuous
bitstream as a MIDI_event object. The syntax of these objects is standardised externally in [MIDI].

5.10.3.2.2 NoteOn
noteon channel note velocity

When a noteon event is received, each instrument in the orchestra currently assigned to channel channel
shall be instantiated with duration –1 and the first two p-fields set to note and velocity. Each value of
MIDIctrl[] within the instrument instance is set to the most recent value of a controller change for that
controller on channel channel or to the default value (see Subclause 5.10.3.4) if there have been no
controller changes for that controller on that channel. The value of MIDIbend is set to the most recent
value of the MIDI pitch bend. The value of MIDItouch is set to the most recent aftertouch value on the
channel.

An instrument instance created in response to a noteon message on a particular channel is referred to as
being “on” that channel.

MIDI semantics Mapping MIDI events into orchestra control MIDI events

173 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.10.3.2.3 NoteOff
noteoff channel note velocity

When a noteoff event is received, each instrument instance on channel channel which was instantiated with
note number note is scheduled for termination at the end of the k-cycle; that is, its released flag is set, and
if the instrument does not call extend, it shall be de-instantiated after the current k-cycle of computation.

5.10.3.2.4 Control change
cc channel controller value

When a cc or control change event is received, the new value of the specified controller is set to value.
This value shall be cached so that future instrument instances on the given channel have access to it; also,
all currently active instrument instances on the channel channel shall have the standard name
MIDIctrl[controller] updated to value.

5.10.3.2.5 Aftertouch
touch channel note velocity

When a touch event is received, the value of the MIDItouch variable of each instrument instance on
channel channel which was instantiated with note number note is set to velocity.

5.10.3.2.6 Channel aftertouch
ctouch channel velocity

When a ctouch event is received, the value of the MIDItouch variable of each instrument instance on
channel channel is set to velocity.

5.10.3.2.7 Program change
pchange channel program

When a pchange event is received, the current instrument receiving events on channel channel shall be
changed to the instrument with preset number program (see Subclause 5.4.6.4.1). If there is no instrument
with this preset number, then future events on the channel, until another program change is received, shall
be ignored.

5.10.3.2.8 Pitch wheel change
pwheel channel value

When a pwheel event is received, the MIDIbend value for each instrument instance on channel channel
shall be set to value.

5.10.3.2.9 All notes off
notesoff

When a notesoff event is received, all instrument instances in the orchestra are terminated at the end of the
current k-cycle. Instruments may not save themselves from termination by using the extend statement in
this case.

MIDI semantics Mapping MIDI events into orchestra control Standard MIDI Files

174 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.10.3.2.10 MIDI messages not respected
The following MIDI messages have no meaning in MPEG-4 Profiles 3 and 4:

Local Control
Omni Mode On/Off
Mono Mode On/Off
Poly Mode On/Off
System Exclusive
Tune Request
Timing Clock
Song Select/Continue/Stop
Song Position
Active Sensing
Reset

5.10.3.3 Standard MIDI Files
MIDI files have data with the same semantics as the MIDI messages described above; however, the timing
semantics are more complicated due to the use of chunks, sequences, and varying tempo.

To process a smf stream information element, the following steps must be taken. First, the entire stream
element is parsed and cached. Then, using the sequence instructions, the tempo commands, and the
sequencer model described in [MIDI], the delta-times of the various events are converted into absolute
timestamps. To perform this step requires converting each MIDI track chunk into a timelist, and then using
the song select and song position commands to interleave the various tracks as required.

Then, for each event labelled with its proper absolute time, the event is registered with the scheduler and
dispatched according to the semantics in the preceding Subclause when the appropriate time arrives.

5.10.3.4 Default controller values
The following table gives the default values for certain continuous controllers. If a particular controller is
not listed here, then its default value shall be zero.

There is no normative significance to these “function names”; however, content authors who wish to use
General MIDI score files with SAOL orchestras are advised to consult [MIDI] for the normative meaning
of the controllers and controller values within General MIDI bitstreams and MIDIfiles.

Controller Function Default
1 Mod Wheel 0
5 Portamento Speed 0
7 Volume 100
10 Pan 64
11 Expression 127
65 Portamento 0
66 Sus Pedal 0
67 Soft Pedal 0
84 Portamento Control 0
Pitch Bend Pitch Bend 8192

Input sounds and relationship with AudioBIFS Introduction Default controller values

175 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.11 Input sounds and relationship with AudioBIFS

5.11.1 Introduction

This Subclause describes the use of SAOL orchestras as the effects-processing functionality in the
AudioBIFS (Binary Format for Scene Description) system, described in ISO 14496-1 Subclause XXX. In
ISO/IEC 14496, SAOL is used not only as a sound-synthesis description method, but also as a description
method for sound-effects and other post-production algorithms. The BIFS AudioFX node allows the
inclusion of signal-processing algorithms described in SAOL which are applied to the outputs of the sound
nodes subsidiary to that node in the scene graph. This functionality fits well into the bus-send methodology
in Structured Audio, but requires some additional normative text to exactly describe the process.

5.11.2 Input sources and phaseGroup

Each node in a BIFS scene graph that contains SAOL code is either an AudioSource node or an AudioFX
node. If the former, there are no input sources to the SAOL orchestra, and so the default orchestra global
inchannels value is 0 (see Subclause 5.4.5.2.3). In this case, the special bus input_bus may not be sent to
an instrument or otherwise used in the orchestra.

If the latter, the child nodes of the AudioFX node provide several channels of input sound to the orchestra.
These channels of input sound, calculated as described in ISO 14496-1 Subclause XXX, are placed on the
special bus input_bus. From this bus, they may be sent to any instrument(s) desired and the audio data
thereby provided shall be treated normally. The number of orchestra input channels---the default value of
orchestra global inchannels---is the sum of the numbers of channels of sound provided by each of the
children.

In any instrument that receives a send from the special bus input_bus, the value of the inGroup standard
name (see Subclause 5.4.6.8.13) shall be constructed using the phaseGroup values of the child nodes in the
scene graph, as follows. The inGroup[] values, when non-zero, shall have the property that inGroup[i] =
inGroup[j] when i ≠ j exactly when input channel i is output channel n of child c1, input channel j is
output channel m of child c2, c1 = c2, and phaseGroup[n] = phaseGroup[m] within c1. (That is, when
the two channels come from the same child and are phase-grouped in that child’s output).

This rule applies in addition to the usual inGroup rules as given in Subclause 5.4.6.8.13.

EXAMPLE

Assume that the two child nodes of an AudioFX node produce two and three channels of output
respectively, and their phaseGroup fields are [1,1] and [1,0,1] respectively. That is, in the first child, the
two channels form a stereo pair; and in the second, the first and third channels form a stereo pair which has
no phase relationships with the second channel.

For the following global orchestra definitions:

send(input_bus ; ; a);
route(a, bus2);
send(bus2,input_bus,bus2 ; ; b);

Assume that instrument a produces two channels of output. Then, a legal value for the inGroup name
within a is [1,1,2,0,2], and a legal value for the inGroup name within b is [1,1,2,2,3,0,3,4,4]. The value for
the inGroup name within a shall not be [1,1,1,0,1], and the value for the inGroup name within b shall not
be [1,1,2,2,2,2,2,3,3] (among other illegal possibilities).

Input sounds and relationship with AudioBIFS The AudioFX node Default controller values

176 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

5.11.3 The AudioFX node

When a SAOL orchestra is instantiated due to an AudioFX BIFS node, only an orchestra file (the orch
field in the node) and, optionally, a SASL score file (the score field) are provided. These files correspond
to tokenised sequences of orchestra and score data forming legal orchestra and score_file bitstream
elements as described in Subclause 5.1.2. Further, a score may not contain new instrument events, but only
control parameters for the send instruments defined in the orchestra.

To instantiate the orchestra for the AudioFX node requires the following steps:

1. Decoding of the orch and score (if any) elements in the node

2. Parsing and syntax-checking of these elements

3. Instantiation of send instruments in the orchestra (as described in Subclause 5.3.2).

Each of these send instances shall be maintained until it is turned off by the turnoff statement, or the node
containing the orchestra is deleted from the scene graph. If the turnoff statement is used in one of these
instruments, it shall be taken as producing zero values for all future time.

The run-time synthesis process proceeds according to the rules cited in Subclause 5.3.3.3 for a standard SA
decoding process, with the following exceptions and additions:

As no run-time events will be received by an AudioFX process, no communication with the systems layer
need be maintained for this purpose. The only events used are those which are in the score field of the
node itself. At each time step, the AudioFX orchestra shall request from the systems layer the input audio
buffers which correspond to the child nodes. These audio buffers shall be placed on the special bus
input_bus and then sent to whatever instruments are specified in the global orchestra header.

Also, at each control-rate step, the params[] fields of the AudioFX node shall be copied into the global
params[] array of the orchestra. These fields are exposed in the scene graph so that interactive aspects of
other parts of the scene graph may be used to control the orchestra. At the end of each control cycle, the
params[] array values shall be copied back into the corresponding fields of the AudioFX node and then
routed to other nodes as specified within the scene graph. (It is not possible to give a more semantically
meaningful field name than params since the purpose of the field may vary greatly from application to
application, depending on the needs of the content).

At every point in time, the output of the orchestra is the output of the AudioFX node.

5.11.4 Interactive 3-D spatial audio scenes

When an AudioSource or AudioFX node is the child of a Sound node, the spatial location, direction, and
propagation pattern of the sound subtree represented at the position of the Sound node, and the spatial
location and direction of the listener, are provided to the SAOL code in the node. In this way, subtle spatial
effects such as source directivity modelling may be written in SAOL.

The standard names position, direction, listenerPosition, listenerDirection, minFront, maxFront,
minBack, and maxBack (see Subclauses 5.4.6.8.16-5.4.6.8.23) are used for this purpose.

It is not recommended that content providing 3-D spatial audio in the context of audio-visual virtual reality
applications in BIFS use the spatialize statement within SAOL to provide this functionality. In most
terminals, the scene-composition 3-D audio functionality will be able to use more information about the
interaction process to provide the best-quality audio rendering. In particular, spatial positioning and source
directivity are implemented at the end terminal with a sophistication suitable for the terminal itself (see

Input sounds and relationship with AudioBIFSInteractive 3-D spatial audio scenes Default controller values

177 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Systems CD, Sound node specification, Subclause XXX). Content authors can use SAOL and the
AudioFX node to create enhanced spatial effects that include reverberation, environmental attributes and
complex attenuation functions, and then let the terminal-level spatial audio presentation be used to any
available rendering method. The spatialize statement in SAOL is provided for the creation of non-
interactive spatial audio effects in musical compositions, so that composers may tightly integrate the spatial
presentation with other aspects of the musical material.

Annex A Tables (normative)

178 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Annex A Tables (normative)

This Annex contains the bitstream token table as referenced in Subclause 5.1 and Subclause 5.8. Certain
tokens are indicated as (reserved), which means they are not currently used in the bitstream, but may be
used in future versions of the standard. Tokens 0xE2 through 0xEF may be used by implementors for
implementation-dependent purposes.

Bitstream token table

Token Text

0x00 aopcode

0x01 asig

0x02 else

0x03 exports

0x04 extend

0x05 global

0x06 if

0x07 imports

0x08 inchannels

0x09 inputmod

0x0A instr

0x0B iopcode

0x0C ivar

0x0D kopcode

0x0E krate

0x0F ksig

0x10 map

0x11 oparray

0x12 opcode

0x13 outbus

0x14 outchannels

0x15 output

0x16 return

0x17 route

0x18 send

0x19 sequence

0x1A sbsynth

0x1B spatialize

0x1C srate

0x1D table

0x1E tablemap

0x1F template

0x20 turnoff

0x21 while

0x22 with

0x23 xsig

0x24 channel

0x25 preset

0x26-0x2F (reserved)
0x30 k_rate

0x31 s_rate

0x32 inchan

0x33 outchan

0x34 time

0x35 dur

0x36 MIDIctrl

0x37 MIDItouch

0x38 MIDIbend

0x39 input

0x3A inGroup

0x3B released

0x3C cpuload

0x3D position

0x3E direction

0x3F listenerPosition

0x40 minFront

0x41 minBack

0x42 maxFront

0x43 maxBack

0x44 params

0x45-0x4F (reserved)
0x50 &&

0x51 ||

0x52 >=

0x53 <=

0x54 !=

0x55 ==

0x56 -

0x57 *

0x58 /

0x59 +

0x5A >

0x5B <

0x5C ?

0x5D :

0x5E (

0x5F)

0x60 {

0x61 }

0x62 [

0x63]

0x64 ;

Annex A Tables (normative)

179 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

0x65 ,

0x66 =

0x67 !

0x68-0x6F (reserved)
0x70 sample

0x71 data

0x72 random

0x73 step

0x74 lineseg

0x75 expseg

0x76 cubicseg

0x77 polynomial

0x78 window

0x79 harm

0x7A harm_phase

0x7B periodic

0x7C buzz

0x7D concat

0x7E empty

0x7F (reserved)
0x80 int

0x81 frac

0x82 dbamp

0x83 ampdb

0x84 abs

0x85 exp

0x86 log

0x87 sqrt

0x88 sin

0x89 cos

0x8A atan

0x8B pow

0x8C log10

0x8D asin

0x8E acos

0x8F floor

0x90 ceil

0x91 min

0x92 max

0x93 pchoct

0x94 octpch

0x95 cpspch

0x96 pchcps

0x97 cpsoct

0x98 octcps

0x99 pchmidi

0x9A midipch

0x9B octmidi

0x9C midioct

0x9D cpsmidi

0x9E midicps

0x9F (reserved)
0xA0 ftlen

0xA1 ftloop

0xA2 ftloopend

0xA3 ftsetloop

0xA4 ftsetend

0xA5 ftbasecps

0xA6 ftsetbase

0xA7 tableread

0xA8 tablewrite

0xA9 oscil

0xAA loscil

0xAB doscil

0xAC koscil

0xAD kline

0xAE aline

0xAF sblock

0xB0 kexpon

0xB1 aexpon

0xB2 kphasor

0xB3 aphasor

0xB4 pluck

0xB5 buzz

0xB6 fof

0xB7 irand

0xB8 krand

0xB9 arand

0xBA ilinrand

0xBB klinrand

0xBC alinrand

0xBD iexprand

0xBE kexprand

0xBF aexprand

0xC0 kpoissonrand

0xC1 apoissonrand

0xC2 igaussrand

0xC3 kgaussrand

0xC4 agaussrand

0xC5 port

0xC6 hipass

0xC7 lopass

0xC8 bandpass

0xC9 bandstop

0xCA fir

0xCB iir

0xCC firt

0xCD iirt

0xCE biquad

0xCF fft

0xD0 ifft

0xD1 rms

0xD2 gain

0xD3 balance

0xD4 decimate

0xD5 upsamp

0xD6 downsamp

0xD7 samphold

Annex A Tables (normative)

180 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

0xD8 delay

0xD9 delay1

0xDA fracdelay

0xDB comb

0xDC allpass

0xDD chorus

0xDE flange

0xDF reverb

0xE0 compress

0xE1 pcompress

0xE2 gettune

0xE3 settune

0xE4 ftsr

0xE5-0xEF (free)
0xF0 <symbol>

0xF1 <integer>

0xF2 <number>

0xF3 <string>

0xF4-0xFF (reserved)
0xFF <EOO>

Annex B Encoding (informative)

181 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Annex B Encoding (informative)
This Annex, provided for informative purposes only, provides guidelines as to the functioning of a typical
Structured Audio encoder. As of this writing, the capabilities of audio-processing algorithms for
performing automatic source separation, identification of instruments, identification of spatial qualities, etc.,
are not sufficiently advanced to perform fully automatic structured-audio encoding. Instead, for the near
future, encoding Structured Audio bitstreams will likely occur in conjunction with authoring tools, where
sound designers compose and orchestrate soundtracks and design instruments, and the results are then
packaged into a legal Structured Audio bitstream.

[to be expanded]

Annex C lex/yacc grammars for SAOL (informative)

182 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Annex C lex/yacc grammars for SAOL (informative)

C.1 Introduction

This Annex provides grammars using the widely-available tools ‘lex’ and ‘yacc’ which conform to the
SAOL specification in this document. They are provided for informative purposes only; implementors are
free to use whichever tools they desire, or no tools, in building an implementation.

The reference software for Structured Audio in ISO 14496-5 builds the lexer and parser for SAOL out of
these grammars by augmenting them with more processing and data-structure construction.

C.2 Lexical grammar for SAOL in lex
STRCONST \"(\\.|[^\\"])*\"
IDENT [a-zA-Z_][a-zA-Z0-9_]*
INTGR [0-9]+
NUMBER [0-9]+(\.[0-9]*)?(e[-+]?[0-9]+)?|-?\.[0-9]*(e-+?[0-9]+)?

%%

"//" { }
"aopcode" { return(AOPCODE) ; }
"asig" { return(ASIG) ; }
"else" { return(ELSE) ; }
"exports" { return(EXPORTS) ; }
"extend" { return(EXTEND) ; }
"global" { return(GLOBAL) ; }
"if" { return(IF) ; }
"imports" { return(IMPORTS); }
"inchannels" { return(INCHANNELS) ; }
"inputmod" { return(INPUTMOD) ; }
"instr" { return(INSTR); }
"iopcode" { return(IOPCODE); }
"ivar" { return(IVAR) ; }
"kopcode" { return(KOPCODE); }
"krate" { return(KRATE) ; }
"ksig" { return(KSIG) ; }
"map" { return(MAP) ; }
"oparray" { return(OPARRAY) ; }
"opcode" { return(OPCODE) ; }
"outbus" { return(OUTBUS) ; }
"outchannels" { return(OUTCHANNELS) ; }
"output" { return(OUTPUT) ; }
"return" { return(RETURN) ; }
"route" { return(ROUTE) ; }
"send" { return(SEND) ; }
"sequence" { return(SEQUENCE) ; }
"sbsynth" { return(SFSYNTH) ; }
"spatialize" { return(SPATIALIZE) ; }
"srate" { return(SRATE); }
"table" { return(TABLE); }
"tablemap" { return(TABLEMAP); }
"template" { return(TEMPLATE); }
"turnoff" { return(TURNOFF); }
"while" { return(WHILE); }
"with" { return(WITH); }
"xsig" { return(XSIG) ; }
"&&" { return(AND); }
"||" { return(OR); }
">=" { return(GEQ); }
"<=" { return(LEQ); }

Annex C lex/yacc grammars for SAOL (informative)

183 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

"!=" { return(NEQ); }
"==" { return(EQEQ); }
"-" { return(MINUS); }
"*" { return(STAR); }
"/" { return(SLASH); }
"+" { return(PLUS); }
">" { return(GT); }
"<" { return(LT); }
"?" { return(Q); }
":" { return(COL); }
"(" { return(LP); }
")" { return(RP); }
"{" { return(LC); }
"}" { return(RC); }
"[" { return(LB); }
"]" { return(RB); }
";" { return(SEM); }
"," { return(COM); }
"=" { return(EQ); }
"!" { return(NOT); }

{STRCONST} { return(STRCONST); }
{IDENT} { return(IDENT) ; }
{INTGR} { return(INTGR) ; }
{NUMBER} { return(NUMBER) ; }
[\t\n] { }
. { printf("Line %d: Unknown character: ’%s’\n",yyline,yytext);
}

%%

Annex C lex/yacc grammars for SAOL (informative)

184 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

C.3 Syntactic grammar for SAOL in yacc
%start orcfile
%left AND OR
%nonassoc LT GT LEQ GEQ EQEQ NEQ
%left PLUS MINUS
%left STAR SLASH
%right UNOT
%right UMINUS
%token HIGHEST

%%

orcfile : proclist
 ;

proclist : proclist instrdecl
 | proclist opcodedecl
 | proclist
 | proclist
 | /* null */
 | error
 ;

instrdecl : INSTR IDENT LP identlist RP LC vardecls block
 | error
 ;

opcodedecl : optype IDENT LP paramlist RP LC opvardecls block RC
 | error

 ;
globaldecl : GLOBAL LC globalblock

 | error
 ;

templatedecl : TEMPLATE LT identlist GT LP identlist RP
 MAP LC identlist RC
 WITH LC mapblock RC LC
 vardecls block
 | error
 ;

mapblock : mapblock COM LT terminal_list
 | LT terminal_list GT
 | /* null */
 | error
 ;

terminal_list : terminal_list COM
 | terminal
 | error
 ;

terminal : IDENT
 | const
 | STRCONST
 ;

globalblock : globalblock globaldef
 | /* null */
 | error
 ;

globaldef : rtparam
 | vardecl
 | routedef
 | senddef
 | inputmoddef
 | seqdef
 | error
 ;

rtparam : SRATE INTGR SEM
 | KRATE INTGR SEM
 | INCHANNELS INTGR SEM
 | OUTCHANNELS INTGR SEM

Annex C lex/yacc grammars for SAOL (informative)

185 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 | error
 ;

routedef : ROUTE LP IDENT COM identlist RP SEM
senddef : SEND LP IDENT SEM exprlist SEM identlist RP SEM

 | error
 ;

inputmoddef : INPUTMOD LP IDENT SEM exprlist RP SEM
 | error
 ;

seqdef : SEQUENCE LP identlist RP SEM
 | error
 ;

block : block statement
 | /* null */
 | error
 ;

statement : lvalue EQ expr SEM
 | expr SEM
 | IF LP expr RP LC block RC
 | IF LP expr RP LC block RC ELSE LC block RC

 | WHILE LP expr RP LC block RC
 | INSTR IDENT LP exprlist RP SEM
 | OUTPUT LP exprlist RP SEM
 | SFSYNTH LP exprlist SEM identlist SEM exprlist RP SEM

 | SPATIALIZE LP exprlist RP SEM
 | OUTBUS LP IDENT COM exprlist RP SEM
 | EXTEND LP expr RP SEM
 | TURNOFF SEM

 | RETURN LP exprlist RP SEM

 | error
 ;

lvalue : IDENT
 | IDENT LB expr RB
 | error
 ;

identlist : identlist COM IDENT
 | IDENT
 | /* null */
 | error
 ;

paramlist : paramlist COM paramdecl
 | paramdecl
 | /* null */
 | error
 ;

vardecls : vardecls vardecl
 | /* null */
 | error
 ;

vardecl : taglist stype namelist SEM
 | tabledecl SEM
 | TABLEMAP IDENT LP identlist RP SEM
 | error
 ;

opvardecls : opvardecls opvardecl
 | /* null */
 | error
 ;

opvardecl : taglist otype namelist SEM
 | tabledecl SEM
 | error
 ;

paramdecl : otype name
 | error

Annex C lex/yacc grammars for SAOL (informative)

186 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 ;
namelist : namelist COM name

 | name
 | error
 ;

name : IDENT
 | IDENT LB INTGR RB
 | error
 ;

stype : IVAR
 | KSIG
 | ASIG
 | TABLE
 | OPARRAY
 | error
 ;

otype : XSIG
 | stype
 | error
 ;

tabledecl : TABLE IDENT LP IDENT COM exprstrlist RP
 | error
 ;

taglist : IMPORTS
 | EXPORTS
 | IMPORTS EXPORTS
 | EXPORTS IMPORTS
 |
 | error
 ;

optype : AOPCODE
 | KOPCODE
 | IOPCODE
 | OPCODE
 | error
 ;

expr : IDENT
 | const
 | IDENT LB expr RB
 | IDENT LP exprlist RP
 | IDENT LB expr RB LP exprlist RP
 | expr Q expr COL expr
 | expr LEQ expr
 | expr GEQ expr
 | expr NEQ expr
 | expr EQEQ expr
 | expr GT expr
 | expr LT expr
 | expr AND expr
 | expr OR expr
 | expr PLUS expr
 | expr MINUS expr
 | expr STAR expr
 | expr SLASH expr
 | NOT expr %prec UNOT
 | MINUS expr
 | LP expr RP
 | error
 ;

exprlist : exprlist COM expr
 | expr
 | /* null */
 | error
 ;

exprstrlist : exprstrlist COM expr
 | exprstrlist COM STRCONST
 | STRCONST

Annex C lex/yacc grammars for SAOL (informative)

187 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

 | expr
 | error
 ;

const : INTGR
 | NUMBER
 | error
 ;

%%

Annex D Detokenisation (informative)

188 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Annex D Detokenisation (informative)
This Annex describes the process of converting a tokenised bitstream representation into a human-readable
program in the textual SAOL format. It is provided for informative purposes only. The result of this
process is much more satisfying if the bitstream contains the optional symbol table element, see Subclause
5.1.

[Needs to be completed or removed].

Index to Subpart 5

189 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

Index to Subpart 5
Page numbers in boldface refer to definitions in the Glossary, Subclause 5.0.3.

- expression...62
! expression...62
3-D audio..53

with AudioBIFS ...177
abs core opcode..77
absolute time...10, 29
access unit

in bitstream...25
processing...27

acos core opcode ..79
actual parameter..10
aexpon core opcode..91
aexprand core opcode..96
aftertouch MIDI event ..174
agaussrand core opcode ..98
aline core opcode..89
alinrand core opcode ...95
All Notes Off ..31, 174
allpass core opcode ..100
ampdb core opcode ..77
aopcode tag ..68
aphasor core opcode ..92
apoissonrand core opcode96
arand core opcode..94
arithmetic expression ..62
array reference expression ..57
array variable

assigning to ..48
operations on ..56, 61

asig ...10
asin core opcode...79
assignment statement ..48
atan core opcode ..78
audio cycle..10
audio rate ..10
AudioBIFS..176
AudioFX node..176, 177
AudioSource node ...30, 176
Backus-Naur Format...10, 16
balance core opcode...107
bandpass core opcode ..99
bandstop core opcode ..100
bibliography..16
binary operators ..62
biquad core opcode..100
bitstream

syntax ...18
BNF See Backus-Naur Format
bus ..10

adding output to ...29
determining width of ..29
when to clear ..30

buzz core opcode..93
buzz core wavetable generator122
call-by-reference ...59

call-by-value .. 59
ceil core opcode ... 79
channel aftertouch MIDI event 174
channel tag .. 44
chorus core opcode.. 113
clipping .. 31
code block

executing.. 48
in opcodes.. 70
syntax of .. 47
when to execute ... 29

comb core opcode.. 101
comment... 34
composition unit .. 29

creating .. 27
compress core opcode ... 108
concat core wavetable generator............................ 123
concat wavetable generator...................................... 38
conformance... 31
constant value expression... 57
context.. 10
control change MIDI event 174
control cycle... 10
control event .. 10

executing.. 30
control line in SASL.. 125
control period... 11
control rate ... 11
core opcodes

list of.. 75
cos core opcode.. 78
cps representation .. 80
cpsmidi core opcode .. 84
cpsoct core opcode... 82
cpspch core opcode ... 82
cpuload standard name .. 66
cubicseg core wavetable generator 119
data core wavetable generator 116
dbamp core opcode ... 77
decimate core opcode .. 109
decoder configuration header

in bitstream .. 25
processing.. 27

decoding process
for illegal bitstreams .. 32
main profile ... 27
Profile 1 ... 173

delay core opcode .. 111
delay1 core opcode .. 111
direction standard name .. 66
doscil core opcode ... 87
downsamp core opcode... 110
dragon book ... 16
dur standard name ... 64
duration .. 11

Index to Subpart 5

190 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

effect instrument ...40
instantiating..41
terminating ...41

else statement..50
empty core wavetable generator.............................123
end event

executing ..29
end line in SASL ..127
envelope..11
event ...11
exp core opcode..77
exports tag..45

with wavetables ..46
expression ...11

rate..56
syntax of ...55
width ..56

expseg core wavetable generator118
extend statement...31, 54, 55

and effect of tempo...30
with negative argument ..55

fft core opcode..103
fir core opcode ...101
firt core opcode ..102
flange core opcode ...113
floating point number (in SAOL)33
floor core opcode..79
fof core opcode ...93
formal parameter...11

calculating value of ..59
declaration..68

frac core opcode...77
fracdelay core opcode..111
ftbasecps core opcode ..85
ftlen core opcode..84
ftloop core opcode..84
ftloopend core opcode..84
ftsetbase core opcode ...85
ftsetend core opcode ..85
ftsr core opcode..85
future wavetable..11, 46
gain core opcode ..107
gettune core opcode ...81
global block ..11, 35
global context ...11
global parameter ...11, 36
global statement..36
global variable ..11

allocating..29
copying values into...28
declaration..37
importing and exporting45
in opcode..59

global wavetable
allowed expressions..38
creating...29, 38
declaration..38
destroying...38
importing and exporting46
order of creation ...38

graceful degradation... 66
guard expression .. 11

and opcode calls .. 58
example.. 49

harm core wavetable generator.............................. 121
harm_phase core wavetable generator 121
hipass core opcode... 98
identifier... 11, 33
identifier expression... 56
identlist (BNF element).. 39
iexprand core opcode.. 95
if statement... 49
ifft core opcode.. 104
igaussrand core opcode... 97
iir core opcode ... 102
iirt core opcode.. 102
ilinrand core opcode ... 95
imported variables

copying values into.. 28
imported wavetable

copying values into.. 28
imports tag .. 45

with wavetables ... 46
inchan standard name .. 64
inchannels global parameter.................................... 37

computation of... 29
with AudioBIFS... 176

inGroup standard name..................................... 40, 65
with AudioBIFS... 176

initialisation cycle .. 12
initialisation pass.. 12
initialisation rate .. 12
input standard name .. 40, 65

setting value of... 29
input_bus .. 40

with AudioBIFS... 176
with AudioBIFS example 176

instr line in SASL.. 125
instr statement ... 50
instrument .. 12

a-cycle.. 30
declaring with template.. 73
definition ... 43
executing.. 28
instantiating ... 28, 29
instantiation ... 12
k-cycle ... 30
name .. 43
terminating... 28, 31
when to execute ... 30

instrument event
executing.. 29

int core opcode .. 76
integer (in SAOL) .. 33
iopcode tag... 68
irand core opcode.. 94
ivar .. 12
k_rate standard name .. 64
kexpon core opcode... 90
kexprand core opcode... 96

Index to Subpart 5

191 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

kgaussrand core opcode ..97
kline core opcode ...89
klinrand core opcode ...95
kopcode tag ..68
koscil core opcode ..88
kphasor core opcode ..91
kpoissonrand core opcode96
krand core opcode ...94
krate parameter ..36
ksig ...12
layering ...50
lineseg core wavetable generator............................118
listenerDirection standard name..............................66
listenerPosition standard name................................66
local variable ..45

allocating..28
modifying with score..45

local wavetable
declaration..45

log core opcode...78
log10 core opcode...79
lopass core opcode ...99
loscil core opcode ...87
lvalue ..48
map list ...73
max core opcode ..80
maxBack standard name ..67
maxFront standard name ...67
MIDI...12

in bitstream...21
messages not used in SAOL...............................175
normative reference to..173
Profile...26
semantics in SAOL...173

MIDI controllers
default values ...175

MIDI event
creating...173
executing ..30
processing...28

MIDI file
decoding...175
processing...27

MIDI pitch number representation80
MIDIbend standard name ..65
midicps core opcode...84
MIDIctrl standard name ..65
midioct core opcode ...83
midipch core opcode ..83
MIDItouch standard name.......................................65
min core opcode ...79
minBack standard name ...67
minFront standard name..67
MSDL...15
namelist (BNF element)..38
natural sound ..13
negation expression ..62
noise generators ..94
Normative References...9
not expression...62

noteoff MIDI event .. 174
noteon MIDI event .. 173
null assignment statement .. 49
number (in SAOL) ... 33
numerical precision .. 34
oct representation... 80
octcps core opcode... 82
octmidi core opcode .. 83
octpch core opcode.. 81
oparray

declaration ... 46
examples .. 60

oparray expression ... 59
opcode.. 13

call ... 58
declaration ... 67
examples .. 71
names... 68
rate of... 71
rate tag ... 68
rate-polymorphic ... 71

opcode array... See oparray
opcode call expression ... 58
opcode expression

parameter mismatches in...................................... 76
opcode tag.. 68
orchestra... 13, 35

configuration.. 29
order of elements ... 35
startup for AudioFX node.................................. 177
startup process ... 29

orchestra cycle.. 13
executing.. 29

orchestra file
in bitstream .. 19
legal bitstream sequence for................................. 32
multiple.. 27
processing.. 27

orchestra time
advancing... 31

order of operations ... 63
oscil core opcode.. 86
outbus statement.. 41, 54
outchan standard name.. 64
outchannels parameter... 37
output

channel widths ... 51
clipping.. 31
example.. 52
of instrument.. 29
of orchestra .. 29, 31
scaling.. 35

output statement .. 51
output_bus .. 29, 31, 40, 41

and outbus statement... 54
and turnoff statement .. 55

parallel execution of instruments 41
parameter fields.. 13, 43

allocating ... 28
params standard name... 67

Index to Subpart 5

192 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

with AudioBIFS ...177
parenthesis expression ..63
pch representation ..80
pchcps core opcode ..82
pchoct core opcode...81
pcompress core opcode..108
periodic core wavetable generator..........................122
p-fields.. See parameter fields
phaseGroup

in AudioBIFS ...176
pitch representations ...80
pitch wheel MIDI event ..174
pluck core opcode ..92
polynomial core wavetable generator.....................120
port core opcode ..98
position standard name...66
pow core opcode...78
preset tag..43
profiles..26
program change MIDI event.............................43, 174
random core wavetable generator116
rate semantics ...13
recursion ...58
reference parameters ...59
released standard name30, 55, 65
reserved words..74
return statement ...70
reverb core opcode...113
rms core opcode ...106
route statement...39, 52

examples...39
run-time error..32
s_rate standard name..64
samphold core opcode ...111
sample...13

in bitstream...21
numeric format ...21
processing...27, 28

sample bank ..10, 14
accessing from SAOL...52
in bitstream...21
processing...27

sample core wavetable generator............................115
in score ...126

SAOL..13
legal programs ..32
lexical elements of..32
purpose of textual representation32
semantics ..32

SASBF..13
profile ...26

SASL ..13
syntax and semantics ..124

sblock core opcode ...109
sbsynth statement ...41, 52
scheduler...14, 28

purpose...28
score..14
score file

in bitstream...20

processing.. 27
time in.. 124

score line
in bitstream .. 20
order of .. 20
processing.. 28

score time... 14
send statement.. 28, 40, 52

and sequencing .. 41
instantiating instrument from............................... 29

sequence statement .. 41
sequencing

and the instr statement .. 51
examples .. 42
instrument execution.. 30
rules ... 41

settune core opcode ... 81
sgn core opcode ... 77
sharing tags .. 45
sin core opcode .. 78
Sound node.. 66
spatialize statement ... 53

and AudioBIFS.. 178
specialop rate type ... 75
speed field.. 30
spline core wavetable generator............................. 119
sqrt core opcode .. 78
srate parameter .. 36
standard names... 63
startup instrument ... 29, 38
state space .. 14
step core wavetable generator................................ 117
string constant (in SAOL) .. 34
structured audio.. 14
Structured Audio

bandwidth .. 9
elements of toolset ... 9
purpose of .. 9

switch expression ... 61
symbol.. 14

in bitstream .. 18
symbol table

in bitstream .. 18
syntax error .. 32
systems

interface to ... 27
table event

executing.. 30
table line in SASL ... 126
tablemap

declaration ... 46
declaration in opcodes ... 70
example.. 47
using in array expression 57

tableread core opcode ... 86
tablewrite core opcode.. 86
template

declaration ... 72
example.. 73

tempo

Index to Subpart 5

193 / 193 FCD 14496-3 Subpart 5 (Structured Audio)

effect on termination ..30
tempo ..15, 29
tempo event

executing ..30
tempo line in SASL..126
tempo standard variable ...30
timbre..15
time standard name...64
token

in bitstream...19
token table ..179
tokenisation ..15, 128

of SAOL...128
of SASL..129

turnoff statement..55
in effect instrument...41
in output_bus instrument.....................................41

universe, negative-time...111
upsamp core opcode ..110
varargs opcodes ..69
variable ...34

declaration ... 44
global ... See global variable
in opcodes.. 69
local ..See local variable
scope.. 59
size of .. 34
static... 59

variables
static... 70

wavetable
creating .. 28, 39

wavetable generators, built-in 115
wavetable placeholder.. 38, 45
wavetable synthesis.. 15

in SAOL... 52
profile .. 26

while statement .. 50
whitespace.. 34
window core wavetable generator 120
xsig rate tag.. 69, 70

examples .. 71

