MPEG-4 Speech Coding

Schuyler Quackenbush
AT&T Labs - Research
Florham Park, NJ 07932 USA
srq@research.att.com
Speech Coding Overview

- Excellent compression by using source model
 - Linear Predictive Coding (LPC)
 - Pitch or noise excitation
- Better compression than “general audio” coders
 - only for “clean speech” from single talker
Speech Coders

- Harmonic Vector Excitation Coder (HVXC)
- Code Excitation Linear Prediction (CELP)
- Wideband CELP

![Diagram showing signal bandwidth and channel bitrate for different speech coders.]

- HVXC: 3.6 kHz
- CELP: 7.2 kHz
- WB CELP: 1.2 kHz

Channel Bitrate, kb/s

May 10, 1999
106th AES Convention
Communication Characteristics

• Low bit rate
 – HVXC 1.2 kb/s to 1.7 kb/s var. rate
 2.0 kb/s to 4.0 kb/s const. rate
 – CELP 4.0 kb/s to 24 kb/s const. Rate

• Low one-way delay
 – HVXC 33.5 ms to 56 ms
 – CELP 15 ms to 45 ms

• Not compromised for modem signals
Bit Rate Scalability

- Parameters coded using multi-stage VQ
 - base plus enhancement layer
- Enhancement layers can be stripped in
 - server
 - channel
 - decoder
Parameter Update Scalability

• Frames are 10 ms to 40 ms
 – 2 to 10 sub-frames per frame

• Linear Prediction Model
 – updated every frame
 – interpolated every sub-frame

• Excitation
 – gain updated every subframe
CELP Decoder Block Diagram

LPC Indices

Lag

Shape index 1

Shape Index n

Gain Indices

LPC Parameter Decoder

Adaptive Codebook

Fixed Codebook 1

Fixed Codebook n

Gain Decoder

LPC Parameter Interpolator

LP Synthesis Filter

Post Filter

Output signal
Demonstration

- 1.7 kb/s variable rate HVXC
- 12 kb/s CELP
- 24 kb/s Wideband CELP