AudioBIFS: Audio Composition in MPEG-4 version 1

Jyri Huopaniemi

Nokia Research Center
Speech and Audio Systems Laboratory
P.O.Box 407, FIN-00045 NOKIA GROUP, Finland
jyri.huopaniemi@nokia.com
Acknowledgements

• Presentation based on:
 • MPEG-4 v.1 FDIS

• Special thanks to my co-authors Eric Scheirer (MIT Media Lab) and Riitta Väänänen (Helsinki Univ. of Tech., Acoustics Lab)
 • Eric for providing the audio demo
 • Riitta for providing the IM-1 audio scene description demo
MPEG-4 Systems Structure

Scene Descr. \(\rightarrow\) compress \(\rightarrow\) multiplex

Compressor

Compress \(\rightarrow\) compress \(\rightarrow\) multiplex

Demultiplexer

Demultiplex \(\rightarrow\) demultiplex \(\rightarrow\) decompress

Composer

Compress \(\rightarrow\) decompress \(\rightarrow\) decompress

Compress \(\rightarrow\) decompress

Compress \(\rightarrow\) decompress

Compress \(\rightarrow\) decompress

Scope of MPEG-4 Systems
MPEG-4 Systems Decoder Structure

Decoding
- Primitive AV Objects
- Scene Description Information
- Object Descriptor

Composition and Rendering
- Audiovisual Interactive Scene
- Display and Local User Interaction

Network
- TransMux
- FlexMux
 - Elementary Streams

Ex: MPEG-2 Transport

Scene Description Information

AV Objects
MPEG-4 BIFS

- Scene description = Coded representation of interactive audiovisual scene
 - *Associate elementary streams with scene description*
- MPEG-4 compressed *Binary Format for Scenes* (BIFS)
- Many concepts inherited from VRML
- Many new concepts in MPEG-4
 - Streaming media with synchronization
 - Dynamic scene changes (BIFS-Anim)
 - Geometry compression
 - 2D and 2D/3D scenes
 - Rich model for audio mixing & post-production
MPEG-4 v.1 Audio Composition

- All VRML (& BIFS) based on scene graph
 - Media content introduced and represented as a set of Nodes
 - Nodes interconnected in hierarchical relationships
- Two sources for audio in VRML
 - AudioClip contains WAVE or MIDI data
 - MovieTexture has audio synchronized to video clip
- Sound attached to objects
 - Sound node used to put sound in the scene
 - “Elliptical” model of attenuation
Audio in VRML: Example

Group {
 children [
 Sphere {
 radius 3
 position 0,0,0
 }
 Sound {
 position 0,0,0
 source
 AudioClip {
 url "http://.../file.wav"
 loop = 1;
 }
 }
]
}
MPEG-4: Two sound modeling strategies

- *Virtual-reality compositing*
 - Goal: physically recreate a sound scene (like VRML)
 - Attach sound to objects, position in 3-D space

- *Abstract-effects compositing*
 - Goal: provide tools for artists
 - Download multiple sounds
 - Use signal-processing to mix / produce effects etc.

- Use either technique (or both) in MPEG-4
MPEG-4 Audio Scene Graphs

- **Sound** node in BIFS attaches an “audio scene graph”
- Nodes below **Sound** create one “object”

![Diagram showing the relationships between Sound, AudioMix, AudioSource nodes]

- **Sound** presented as sound
- **AudioMix** not presented as sound

Nodes below **Sound** create one “object”
MPEG-4 Version 1 Audio BIFS Nodes

<table>
<thead>
<tr>
<th>Node</th>
<th>Purpose</th>
<th>from VRML</th>
</tr>
</thead>
<tbody>
<tr>
<td>AudioBuffer</td>
<td>Insert an audio clip to scene</td>
<td></td>
</tr>
<tr>
<td>AudioClip</td>
<td>Interactively trigger snippets of sound</td>
<td></td>
</tr>
<tr>
<td>AudioDelay</td>
<td>Insert delay to sound</td>
<td></td>
</tr>
<tr>
<td>AudioMix</td>
<td>Mix sounds</td>
<td></td>
</tr>
<tr>
<td>AudioSource</td>
<td>Define audio source input to scene</td>
<td></td>
</tr>
<tr>
<td>AudioFX</td>
<td>Attach structured audio objects to sound</td>
<td></td>
</tr>
<tr>
<td>AudioSwitch</td>
<td>Switching of audio sources in scene</td>
<td></td>
</tr>
<tr>
<td>Group, Group2D</td>
<td>Grouping of nodes and subtrees in a scene</td>
<td></td>
</tr>
<tr>
<td>ListeningPoint</td>
<td>Define listening point in a scene</td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td>Define properties of sound</td>
<td></td>
</tr>
</tbody>
</table>
AudioBIFS nodes

- **AudioSource**
 - Provides streaming audio to the scene
 - Attaches to any MPEG-4 audio decoder

- **AudioMix**
 - Mix M channels of sound into N channels
 - Mixing matrix can be controlled interactively
AudioBIFS nodes

• AudioDelay
 • Delay sounds slightly, for synchronization

• AudioSwitch
 • Choose N channels out of a set of M
 • (AudioMix with 1/0 matrix, N < M)

• AudioBuffer
 • Grab a “clip” for interactive use
 (Also used to compress samples for wavetable synthesis)
AudioBIFS nodes

- **AudioFX**
 - Download custom effects algorithms
 - Apply to M channels to get N channels
 - SAOL is used to describe effects
 (integrated with Structured Audio toolset)

- Important philosophy:
 - MPEG didn’t pick “the standard reverb”
AudioBIFS nodes

- **Sound**
 - Just like VRML, slightly more detailed semantics
- **Sound2D**
 - Put sound in 2-D scenes
- **ListeningPoint**
 - Control the “virtual ear” in the scene
- **TermCap**
 - Make scenes change depending on local resources
 (Number of speakers, dynamic range, max sampling rate)
The big picture

Sound

AudioBIFS manipulation

Audio Source

Natural Decoder

Audio Source

Synthetic Decoder

Attach sound to main scene
(spatially position if desired)

Create sound object
with AudioBIFS

Inject sound into scene graph

Decode into raw audio samples

Streaming compressed audio
Demonstration

- **16 kbps** MPEG-4 soundtrack
- Natural and synthetic speech
- Synthetic music and sound effects
- Mixdown in AudioBIFS
- Effects-processing described in SAOL
Structured audio scene

- **BIFS stuff**
 - Hand-clapping (SA decoder)
 - Add reverb
 - Mix to make new sound

- **Audio stuff**
 - Synthetic Sound
 - Natural Sound

- **AudioMix**
 - Mix to make new sound

- **AudioFX**
 - Voice track (CELP decoder)
Structured audio scene

BIFS stuff

AudioMix

AudioMix

AudioFX

AudioFX

AudioSource

AudioSource

AudioSource

Includes synchronization!

Piano (SA) Bass (SA) Finger snaps (natural)

Audio stuff
Demonstration

- MPEG-4 Reference Software
 - 3-D IM-1 player
- Examples of MPEG-4 v.1 Audio scene description
 - Polygon model of a concert hall with a sound source (coded audio file)
 - Simple room model with two human speakers
 - Interactivity, 3-D positioning, distance effects
MPEG-4 version 2: Advanced Audio BIFS

- More advanced “virtual reality” sound using physical modeling
 - Distance dependent attenuation
 - Directivity & modeling of sound propagation
 - Air absorption, Doppler effect
 - Modeling of room reflections and transmission
 - Parameters for late reverberation
- More advanced audio postprocessing using perceptual modeling
 - Perceptual parameters for controlling sound sources and rooms independently of the visual scene
- To be completed early 2000, currently in Committee Draft stage
Conclusions

- MPEG-4 AudioBIFS provides a powerful unifying framework for:
 - Virtual-reality audio scenes
 - Abstract-effects compositing for “serious content”
 - Downloadable effects algorithms
 - Streaming and interactive sound
 - Environmental modeling (version 2)
- For more information & code:
 - <http://sound.media.mit.edu/mpeg4>