Natural Audio Tools in MPEG-4

Schuyler Quackenbush
AT&T Labs - Research
Florham Park, NJ 07932 USA
srq@research.att.com
Outline

• Introduction and Overview
• Speech Coding
• General Audio Coding
 – Jurgen Herre, FhG-IIS
• Scalable Audio Coding
 – Bernhard Grill, FhG IIS
Media Objects and Associated Operations

• Objects
 – Natural audio
 – Synthetic audio
 – Control

• Operations on objects
 – Synchronize
 – Decode
 – Compose into compound objects
 – Present
 – Interact
Advantages of Object Framework

• Each signal coded with most efficient coding system
 – Natural
 – Synthetic

• Composition of objects into audio scene
 – Rate conversion
 – Mix and Eq
 – Effects

• Final mix is done in the terminal
System Overview

Demux Synch Decode Compose

Obj 1 Dec 1 Audio Scene Graph

Obj 2 Dec 2

Descrip

Channel

IPR Mgmt Interf.

IPR Control

Interaction

Compound Object

Listener

Present
Audio Object Functionalities

• Signal compression
• Scalability
 – bit rate
 – signal bandwidth
 – presentation rate
 – encoder or decoder complexity
• Extraction and re-use
• Robustness to channel errors
Scalability

Satellite Cellular phone Internet ISDN
Secure com.

2 4 6 8 10 12 14 16 24 32 48 64
bit-rate (kbps)

Scalable Coder

TTS

Speech coding

General audio coding

4 kHz 8 kHz Typical Audio bandwidth 20 kHz

Typical Audio bandwidth

May 18, 1999 NCITS
Application Domains
Version 1 Profiles

- **Speech**
 - low rate speech coders and TTS

- **Scalable**
 - speech coders
 - general audio coders
 - all coders in scalable configuration

- **Synthetic**
 - wavetable synthesis
 - score driven synthesis
 - TTS

- **Main**
MPEG-4 Speech Coding: Overview

- Excellent compression by using source model
 - Linear Predictive Coding (LPC)
 - Pitch or noise excitation

- Better compression than “general audio” coders
 - only for “clean speech” from single talker
Speech Coders

- Harmonic Vector Excitation Coder (HVXC)
- Code Excitation Linear Prediction (CELP)
- Wideband CELP
Communication Characteristics

• Low bit rate
 – HVXC 1.2 kb/s to 1.7 kb/s var. rate
 2.0 kb/s to 4.0 kb/s const. rate
 – CELP 4.0 kb/s to 24 kb/s const. Rate

• Low one-way delay
 – HVXC 33.5 ms to 56 ms
 – CELP 15 ms to 45 ms

• Not compromised for modem signals
Bit Rate Scalability

• Parameters coded using multi-stage VQ
 – base plus enhancement layer
• Enhancement layers can be stripped in
 – server
 – channel
 – decoder
Parameter Update Scalability

- Linear Prediction Model
 - updated every frame
 - interpolated every sub-frame

- Excitation
 - gain updated every subframe
Demonstration

- 1.7 kb/s variable rate HVXC
- 12 kb/s CELP
- 24 kb/s Wideband CELP